ENUMERATION OF KEKULÉ STRUCTURES: TRIANGLE-SHAPED BENZENOIDS

S. J. CYVIN

Division of Physical Chemistry, The University of Trondheim, N-7034 Trondheim-NTH, Norway

(Received: December 1986)

Abstract: The enumeration problem of Kekulé structures for the benzenoid class of prolate triangles has been solved previously. Here the considerations are extended to oblate and intermediate triangles.

This is a continuation of the work on the number of Kekulé structures of classes of mirror-symmetrical pericondensed benzenoids.

Definitions. When n=1 for the mirror-symmetrical pentagons treated in the previous articles, 1,2 viz. $D^{i}(m,n)$ and $D^{j}(m,n)$, they reduce to triangular-shaped benzenoids or triangles. Specifically we define (a) the prolate triangle as

$$T^{i}(m) = D^{i}(m,1)$$

and (b) the oblate triangle as

$$T^{j}(m) = D^{j}(m,1);$$

see Figure 1. Prolate and oblate benzenoids have, as usual 3,4 the indentation inwards and outwards, respectively. It is useful to define an additional class, say T(m), the intermediate triangle; see Fig. 1(c). This type of benzenoids may be created by (a) deleting an end hexagon from a prolate triangle or (b) adding a hexagon at the end of an oblate triangle. Figure 1 illustrates these features.

Fig. 1. The definitions of (a) prolate triangle, (b) oblate triangle and (c) intermediate triangle.

Connections between K numbers. The numbers of the Kekulé structures (K) for the three classes of triangles are inter-connected. An abbreviated notation is defined in the heading of Table 1. In terms of these symbols the following recurrence properties are valid.

$$T_m^{i} = T_{m-1}^{i} + T_{m-1}; \qquad m \ge 1$$
 (1)

$$T_m = T_m^{j} + T_{m-1}; \qquad m \ge 1$$
 (2)

As initial conditions one has

$$T_0^{i} = T_0^{j} = T_0 = 1$$
 (3)

Table 1. Numerical values of:

$$K\{T^{i}(m)\} = T_{m}^{i}, K\{T^{j}(m)\} = T_{m}^{j}, K\{T(m)\} = T_{m}.$$

m		T_m^{i}		T_{m}^{j}		T_{m}
0		1		1		1
1		2		2		3
2		5		6		9
3		14		19		28
4		42		62		90
5		132		207		297
6		429		704	1	001
7	1	430	2	431	3	432
8	4	862	8	502	11	934
9	16	796	30	056	41	990
10	58	786	107	236	149	226

The information (1)-(3) is not sufficient to deduce successively the numbers for increasing m values. A necessary additional piece of information is reported in the subsequent paragraph.

Prolate triangle. During a previous work on truncated parallelograms ⁵ a triangular benzenoid was considered as an example. It is virtually identical with our prolate triangle. By means of an algorithm the following result was obtained for its K numbers. ⁵

Now all the numbers T_m^{i} are accessible. From the recurrence relations (1) and (2) one obtains for the other types of triangles:

$$T_m^{j} = T_{m+1}^{i} - 2T_m^{i} + T_{m-1}^{i}; m \ge 1$$
 (5)

$$T_{m} = T_{m+1}^{i} - T_{m}^{i} \tag{6}$$

Oblate triangle. For the sake of completeness we also report the relations of the type (4) for the oblate and intermediate triangles. In the former case one has

where

$$T_{i} = \sum_{k=0}^{i} T_{k}^{j} \tag{8}$$

Intermediate triangle. Finally we have the following set of equations for the class of intermediate triangles.

Conclusion. A complete solution of the enumeration problem for Kekulé structures of the prolate, oblate and intermediate triangles is given. A preliminary set of recurrence relations, viz. eqns. (1) and (2), is an incomplete solution. The complete solutions, viz. eqns. (4), (7) and (9), are recurrence relations of a type not frequently encountered in the Kekulé structure enumerations. The number of terms accumulate with increasing m. More direct solutions have not been achieved.

Numerical K values up to m=10 are collected in Table 1.

REFERENCES

- 1 B.N. Cyvin, S.J. Cyvin and J. Brunvoll, Match
- 2 S.J. Cyvin and B.N. Cyvin, Match
- 3 S.J. Cyvin, B.N. Cyvin and I. Gutman, Z. Naturforsch. 40a, 1253 (1985).
- 4 S.J. Cyvin, B.N. Cyvin and J.L. Bergan, Match 19, 189 (1986).
- 5 S.J. Cyvin and I. Gutman, Match 19, 229 (1986).