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Abstract: The enumeration problem of Kekulé structures for the benzenoid
class of prolate triangles has been solved previously. Here the conside-
rations are extended to oblate and intermediate triangles.

This is a continuation of the work on the number of Kekulé structures

of classes of mirror-symmetrical pericondensed benzenoids.

Definitions. When n=l for the mirror-symmetrical pentagons treated in
the previous articles,1'2 viz. Dl(m,n) and DJ(m,n), they reduce to triangu-—
lar-shaped benzenoids or triangles. Specifically we define (a) the prolate

triangle as

tem = ptn,1)

and (b) the oblate triangle as
) = pl(m,1);

see Figure 1. Prolate and oblate benzenocids have, as usual3‘a the indenta-—
tion inwards and outwards, respectively. It is useful to define an additio-
nal class, say T(m), the intermediate triangle; see Fig. 1{(c). This type of
benzenoids may be created by (a) deleting an end hexagon from a prolate

triangle or (b) adding a hexagon at the end of an oblate triangle. Figure 1

illustrates these features.
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Fig. 1. The definitions of (a) prolate triangle, (b) oblate
triangle and (C) intermediate triangle.

Conneetions between K numbers. The numbers of the Kekulé structures ()
for the three classes of triangles are inter-connected. An abbreviated nota-
tion is defined in the heading of Table 1., In terms of these symbols the fol-

lowing recurrence properties are valid.

e Tm-l ; i M
goagdaw g m> 1 )

As initial conditions one has
plapdar =1 (3
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Table 1. Numerical values of:

krtm} =, kidm} =13, kirmi -1 .

= L5 Ty T
o 1 1 1
1 2 2 3
2 5 6 9
3 14 19 28
4 42 62 90
5 132 207 297
6 429 704 1 001
7 1 430 2 431 3 432
8 4 862 8 502 11 934
9 16 796 30 056 41 990

10 58 786 107 236 149 226

The information (1)-(3) is not sufficient to deduce successively the numbers
for increasing m values. A necessary additional piece of information is re-

ported in the subsequent paragraph.

Prolate triangle. During a previous work on truncated parallelograms5
a triangular benzenoid was considered as an example. It is virtually iden-
tical with our prolate triangle. By means of an algorithm the following

result was obtained for its X numbers.s

i_{o
o= (5) -1,
i 2N
ri-(3)-2,

m=2

S COR P ) PR

=0

Now all the numbers Tml are accessible. From the recurrence relations (1)

and (2) one obtains for the other types of triangles:



(6)

Oblate triangle. For the sake of completeness we also report the rela-
tions of the type (4) for the oblate and intermediate triangles. In the for-

mer case one has

d 19y
rd = B) =1
iof2) .
) '(1) Z,
i w %) =
e ()
m=3
i_ (2 _ m-3-22Y |
Tm (m) T.( m-i )’ 2 M
£=0
where
7
- |
Ti = Tk (8)
k=0

Intermediate triangle. Finally we have the following set of equations

for the class of intermediate triangles.

m=-2

I - (2m+].) - Z T_(zvn-z-_zq:) ; o
m m T m-t

=0

| v
IN]

(9)

Conelusion. A complete solution of the enumeration problem for Kekulé
structures of the prolate, oblate and intermediate triangles is given. A

preliminary set of recurrence relations, viz. egns. (1) and (2), is an in-—
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complete solution. The complete solutions, viz. eqns. (4), (7) and (9), are
recurrence relations of a type not frequently encountered in the Kekulé
structure enumerations. The number of terms accumulate with increasing m.
More direct solutions have not been achieved.

Numerical X values up to m=10 are collected in Table 1.
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