mealieh no. 19 pp. 89-116 1986

A NOTE ON TOPOLOGICAL INDICES

M. Barysz
Institute of Chemistry, Silesian University,

40-006 Katowice, Poland

D. Plav3ié and N. Trinajstié
The Rugjer BoSkovié¢ Institute, P.0.B. 1016,

41001 Zagreb, Croatia, Yugoslavia

(Received: May 1985)

ABSTRACT

A number of topological indices are defined in terms
of the higher order adjacency matrices. In this way the
similarities and differences between many of the indices

may immediately be seen.
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1. INTRODUCTION

The revived interest in topological indices is ap-
parent from a number of recent reviews [1-7}. Topological in-
dices are convenient devices for translating chemical consti-
tution into a single number which may be used in quantitative
structure-property relationships (QSPR) or in quantitative
structure-activity relationships (QSAR). The latter use is
especially vigorously expleited in the last few years [1,3-5.

8-13].

We counted 39 topological indices that are presently
available in the literature [14]. They are usually classified
as topological indices based on the adjacency matrix or on
the distance matrix [3-7,15]. Such a large number of topo-
logical indices rised a question to what extent are they or-
thogonal. In other words, is it possible that some topologi-
cal indices existing in the literature express predominantly
the same type of constitutional information: the difference

residing in the scaling factor?

Recently the interrelations amongst the topological
indices was studied [7,16]. The conclusions reached were that
a number of the indices are strongly intercorrelated inde-
pendently of a way how they were derived. This lead us to
look closer at the present classification of topological in-
dices as those based on the adjacency matrix and those based
on the distance matrix. It appears that this classification

is somewhat artificial. We decided to investigate whether
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this variety of topological indices may be derived from the
same topological [17] invariant. For this purpose it is natu-
ral to select the adjacency matrix of a graph (structure)
[18,19] since it can be simply set for any G. In this work

we will follow the nomenclature of our book [5,19 1and graph

theoretical definitions of Harary LEO].

2. HIGHER ORDER ADJACENCY MATRICES

Molecules will be represented by chemical graphs [19,

21]. A (chemical) graph G consists of a finite, non-empty

set V V(G) of vertices (atoms), tougether with a prescribed
set E = E(G) of subsets of Vwith two distinct vertices. The
elements of E are called the edges (bonds) of G and denoted
as e = {u,vle E. The vertices u and v are said to be adjacent
if {u,v}e E. Graphs with multiple edges {(double, triple
bond), weighted vertices (heterocatoms), and weighted edges

(heterobonds), are not considered, although this can-also be

done [22-25}.

The adjacency matrix of a labelled graph G,
with N vertices, A(G) = A, is the square symmetric matrix
which contains information about the internal connectivity of
vertices in G. It is defined as
1t if, and only if, {i,j)ec E

(A), . = (1)
=1 0 otherwise
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The adjacent vertices, i.e. the vertices amongst which the
topological distance is unity, are the first neighbours. The
vertices amongst which the distance is 2 are the second neigh-

bours. The higher neighbours are defined in an analogous way.

In analogy with the adjacent matrix, A = ﬂ]v one can
derive the adjacency matrices of higher orders: second order
29
defined as

third order £3, fourth order ﬂﬂ’ ete. These matrices are

1 if, and only if, the vertex j is the

(ﬁk}ij = k-th neighbour of the vertex i (2)
0 otherwise

The diagonal elements of the square powers of the higher
order adjacency matrices ﬁk K = 2,3 845, ¢ o) (Akz)ii’ give
the number of k-th neighbours of the vertex i. The sum of the

matrices Ak is equal to the matrix B.

2> A = B (3)

where B is the (NxN) matrix with entries (E)ij: 1 and (g)iizo,

respectively.

The example of the first and second order adjacency

matrices and their square powers is given in Figure 1.



Figure 1
The first and second order adjacency matrices and their

square powers for a tree-graph G

4
1 2 3
G
0 1 o o 1 0 1 1]
1 0 1 1 2 0 3 0 O
A = A =
-1 ~ 1 0 O =1 10 1 1
o 1 0 o] 1 0 1 1
[0 0 1 1] [2 0 1 1]
0 0 0 O > 0 0 0 0
A A =
23 = 1 0 0 1 =2 - 1 0 2 1
1 0 1 0 1 0 0 2
The element (ﬂk)ij = 1 means that the distance between
the vertices i and j is k. Hence, (D).. = k, where D is the

_1j
distance matrix [18,19]. Therefore, when all the higher order

matrices are known, the elements of the distance matrix are

also known.

The matrices ﬁk may be obtained by means of the fol-

lowing procedure based on binary Boolean algebra L76,27,28].

If

(%)
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where I is the unit matrix, and

kmax = min k (5)
for which

(L » 8, 0° =4z K5 (6)
then

f=1 (n

sl =1+ (8)

S22 (I +Ap (9)

ékmax & (-:£ P é )kmax = (E o EI)kmax“ (10)
and

B = 86 T (n

(D) = min k (12)
for which

k <k (13)

max



o G

and

Example is given in Figure 2.

Figure 2

k

01 1 1 0
10 1 0 1
A=A = 11 0 0 ©
S 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
(10000
0 1 0 0 o0
SO . 0 0 1 0 0
- 0 0 0 1 0
0 0 0 0 1
0 0 06 0 0

S and ﬂk matrices of a given graph G

(14)

(15)
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0 0 0 0O

0 0 0

0
0 0 0 0 0 O

0

0

0O 0 O
0 0 0 O

We developed a computer program for generating the -‘ik matri-

ces of complex graphs using the above procedure [29 ].
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3. TOPOLOGICAL INDICES DEFINED IN TERMS OF THE HIGHER
ORDER ADJACENCY MATRICES

The adjacency matrix appear to be a very convenient
basis for defining, and computing a number topological indi-

ces. We list several of them below.

(a) Total adjacency index [30,31]
N
1
A= > A (16)
2in &

where Ai = (ﬂ?)ii is the number of all first neigh-
bours of the vertex i and N is the number of vertices.
This index is equal to the total number of edges

(i.e. 1-walks) in G.

(b) The Zagreb Group indices [32,33]

N
My= 3 Ay Ay (7
1:1
M, = 3 A, A, (18)
2 gy v
edges

(c¢) Randié's connectivity index [ 34 ]

-1/2
wp = 2 (A AJ) (19)
L, 7

edges

This index is used abundantly in QSAR works.



- 98 -

(d) Platt’s number [35]

F = > (Ai + A, - 2) (20)
all J
edges

It may be reformulated as follows
F= X (A . A =~ A) (21)

The first formula enables the direct comparison betwe-
en F and A, whilst the second between F and the Zagreb

Group indices, and also between F and Kg-

(e) Gordon-Scantlebury’s index [ 36 ]

A, < A, - (N+ p - 1) (22)

N
= i i

1
SEE

i=a

where u 1is the cyclomatic number of a graph. The
cyclomatic number of G enumerates the number of inde-
pendent cycles in G and is equal to the minimum cuts
(removal of edges) necessary to convert G into a tree
(acyclic graph). For the complex graphs y may be calcu-

lated by means of the following formula

p=M-N+1 (23)

where M is the number of edges in G.
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Substitution of pu in (22) by (23) leads to

1
S-_—?— > A, . A, - M (24)

1:1

Gordon-Scantlebury’s index represents the number
of all paths of length two in G. It is easily shown

that the S index is equal to the half value of F

F. (25)

(f) Wiener’s number [37]

1 N
W== 3 W (26)
2
i=1
where
kmax
_ 2
W= X 480y« k (27
k=1

(g) The polarity number [37]

Pl 3 )y, (28)

Z =T

The polarity number represents pairs of vertices three

edges apart in G.
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(h) The distance sum index [ 38,39]
v = W (29)

Because of the strong connection between Wiener’s

number and Wi, and historical continuation of Wiener’s

ideas [ZS,HO-UN], we propose the name Wiener’s vertex

index for the distance sum index.

(i) Balaban’s index [38)

-1/2

J=2- 3 vy - vp ) (30)
! an
edges

where q is the number of edges in G, u the cyclomatic

number of a graph, and v, ., Vv N Wiener's vertex
D,i D,j

indices. Balaban’s index represents an average dis-

tance sum connectivity index.

(j) Altenburg’s polynomial [QB]

N
2 By (31)
i=1

1
P {G;x) = —
L 2

where Pi is Altenburg’s index

2
o« % % CEEY. (32)
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(Ai)‘i is the number of atoms at a distance k
2k'i

from the i~th atom.

(k) Mean square distance topological index [7]

N k 1/
max(AQ) 5 8
Z 2 Zkdlaw 7
.: =1
D(s) | i=1 Kk (33)
N k
max o
E Z (Ak)n
i=7 k=t
On testing variocus exponents s = 1,2,3, or 4 in (33),

it was found [38] that for s = 2 afforded for alkanes

the smallest degeneracy. For cyelic graphs, however,

D(2) has a fairly high degeneracy. D(z) decreases with

increasing branching.

In Figure 3 we give as an example the calculations for
all listed topological indices.
Figure 3

falculation of the topological indices presented in this work

in terms of the higher order adjacency matrices and their

square powers 6
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0
0
o}
2

0

c 0 0
0
0

0

L0 0

0]

{a) Total adjacency index
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(b) The Zagreb Group indices

N N
2 2 _
Hy= 3 Mwudg = 3 LBy o Uy s
iz1 =1
2 2 2 2
= Qydyy =« Thpdyy » Wty = (ilps * oo e
2 2 =
+ Cflgg « Liylgs =
= 30
2 2
My= 3 A - Ay = 3 (AD,, . (A7)
all all
edges edges
2 2 2 2
= (A7) - (A])os + (A7), - (£1)33 +
2 2 2 2
# U dgy C8Y Ty + o % Udas » 19Dge =
= 36
(c) Randié's connectivity index
-1/2
} -1/2 2 2 B
Hp = 2 {AiAj) = E[(A1)ii & (ATJJ'J -
all all _J
edges edges

"
n
-
w
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(d) Platt’s number

- _ 2 2 =
F= Z (ﬂi-rﬂj-Z)- 2z (£T)ii+(£1)jj~2 =
all all
edges edges
= Ij(n_nj)”+ (i?)za- 2]+ ...+[(_&$)33+ (E$)66 - 2}:
= 18
(e) Gordon-Scantlebury’s index
N
s=1 3 A . -H=
B = N g -
1s1
1
= =M - M=
2 1
=9
(f) Wiener's number
N N Kpay
1 1 2
W=— 3 W== 3 3 (g toy = Y=
2 2 TR
i=1 iz=1 kz?
N
1 2 2 2 ]
=24 3 [(51)11 .1+ (A3); . 2 + (A, - 3} -
i=1

[=

) 2 2 2
= Ei.l).l.‘ . 1+(£1)22.1+...+(£1)56- 1}#
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2 2 2
+[(A2)H c 2+ (AS)op e 2+ we + (AD)(e - 2:1 +

2 2 2
+[(£3)1T s 3 + (£3)22 e 3+ ees *+ cia)ﬁﬁ - 3} =

27

(g) The polarity number

N
1 2 1 2 2
p = ’2' 3 (£3)ii = El:(£3)” + (£3)22 + o+
i=1
2
= 3

(h) Wiener’s vertex index

Vp,1 * Wep io= 1,2, ,6
K
max
2
W, o= (Adig - K
k=1
2 7 2
W= (A gy - 1w (B5)q . 2w (AS)y, - 3=
=7
W, = (A%) i % (A2) 2 + (&%) 3=
2 # Lglas dalay = 23722 - J 7



- 106 -

2 2 2 &
6 = (A1)66 1 o+ (£2)65 i 8 * (A3)65 . 3 -

1

(i) Balaban’s index

Fadd & (wiwj)'”2 .
1o
edges

6 w172 S _1/2
= —[(w1 . W) + (g W)

T+1

+(WT.WH) +

-1/2 172 =172 | -
+ (Wy . W) + (W, . W) + (Wg . We) :'-

3

-1/2 -1/2
+

=3[(7.7)'”2+(7.7) e P ¢ T
o B o PR o L 11T e B 11)‘”'1 -

= 2.315

(j) Altenburg’s polynomial

N N kmax
P,(Gx) =+ 3 P, =1 3 2 x (42, =
A= - X~ k ‘=k’ii ~
2 2 .
1:21 i=1 k=1

N
1 2 2 2 ”
== 2 [x1(£1)ii + x5(A5) 5+ x3(§3)ii} =
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: 15 |:1(ﬁ)” SR g # s x1(ﬂ?)66} .
[ bl & A s 4 et @ xe(ﬁg)%] .
|:x (A Ty, + Hulhi)on + wns # x3(£§)66i| .

= 6x1 + 6x2 + 3x3

(k) Mean Square Distance Topological Index

N Kpax 1/s
s
b (ﬂk)ll 5 X
(s) =1 =1
N max 5
Z 2 {Ak)ll
i=1 k=1

171
! 2 1
_ + (A3)y;- 3

D(1) o i=1

11t (A + (A

2)11 3)11

[

|

" opy =
—
=
- N
~—

E

2 2
(A7)q7 - 1 + (A1)22 T (£3)56 .3 )

2 2
A qq ¢ Ay + oen s o=

= 1.8
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; ) T i B4 DA 3o -
21741 * AAp Mg s Y W3y
1 .

g2y ) s= =

2 2 2 2|1/2
(A1)11 P s (51)22. 1 4+ cuu+ (53)66.

w

2 2 2
(£4)11 + (£1)22 + e+ (53)66

=1.95

4. CONCLUDING REMARKS

Higher order adjacency matricesprovide a way for the
uniform definition of many topological indices. The comparison
between indices (a)-(e) (these are topological inidices ear-
lier classified as those based on the adjacency matrix [46])
and (f)-(k) (these are topological indices earlier classified
a#s those based on the distance matrix) reveals that the first
set of indices is based on the number of first neighbours,
whereas the indices in the second set are based on the number
of second, third, and higher order neighbours, respectively.
However, all these indices are related through the adjacency
matrix. The strong intercorrelation between M1 and S (the
correlation coefficient is 0.98 for alkanes, 0.99 for alkyl-

benzenes, and 0.97 for cyclic structures [16}) is not sur-
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prising, because these two indices differ for a given graph

for the number of bonds conly

25 - M

1= 2M. (34)
Interesting finding by Motoc et al. [16] is the high corre-
lation between Randié’s connectivity index and Wiener's number
(the correlation coefficient 0.98 for alkanes, 0.99 for alkyl-
venzenes, and 0.98 cyclic structures [16]). The only reason
for the strong intercorrelation we see€ in the fact that at
the root of both indices is the adjacency matrix. The above
result justifies the use of Wiener's number in QSPR and QSAR
studies on equal footing to highly successful Randié’s con-

nectivity index [ 13,40,41,47].

A fairly high correlation is also found between M1
index and Wiener's number (the correlation coefficient is 0.80
for alkanes, 0.88 for alkylbenzenes, and 0.84 for cyclic
structure [16]).This leads to the idea that the Zagreb Group

indices may be redefined in terms of the distance suﬁ“indices

N

My s & W o W (35)
i=1

My= 3 W . Wy (36)
all



= A0 ~

It is well known that the indices M1 and ”R are re-
lated through the adjacency matrix. Thus, the high interrelation-
ship between them is not surprising (the correlation co-
efficient is 0.78 for alkanes, 0.89 for alkylbenzenes, and

0.81 for cyelic structures [ 16]).

Our present work in progress [HS] is aimed to detailed
study of the intercorrelation between topological indices for

alkane-trees and polyhexes.
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