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Summary

The valence problem of a mixture is the assessment of the compositions of its
intermediate phases. The known valence models may be judged by means of the
reduced density functions of electrons. The electron pair density (spatial
correlation) is decisive for valence assessment and it suggests a synthesis
of the known phenomenological valence models. The system of all electrons
of a crystal contains two or three chemically relevant subsystems b.,e,c
which display strong internal and weaker external interaction. The internal
interaction causes a lattice-like spatial correlation of the electrons in the
subsystem . Although only a small fracticn of all probable configurations
belongs to the lattice, this fraction is essential for the bonding as it con-
stitutes the main portion of the rearrangement of electron pair density. The
lattice-1ike property is described by the averaged spatial correlation exhi-
biting unessential maxima near the atom cores not rearranging during bond
formation, and esential maxima strongly influenced by rearrangement of elec-
tron pair density. The external interaction causes commensurability between
the crystal cell a and the electron correlation cells b,e,c. An energetically
favourable commensurability between the cells a,bec (& harmony between the
subsystemq determines the composition of a stable phase. The correlation types
and commensurabilities define bonding types (bindings) which allow to classi-
fy all phases with respect to bonding. Numerous crystal chemical rules are
interpreted by the model, and the method of determination of the binding is
simple and straigh tforward.

* tytended version of a contribution to the Int. Symp. on Applic. of Mathem. Con-
cepts to Chemistry, Dubrovnik, Yugoslavia, September 1985.
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The valence problem

A closed chemical system of .two components may be described macroscopically
by the internal energy U as a function of the external variables volume V,
entropy S, mole numbers ﬂl’ﬂz of the components, and of internal variables
M;which take a value to wminiirize U. The molar internal energy U/ZN=U" as a
function of the mole fraction yzlgﬂ;ﬂé often has No~intervals in which U'(Né)
is a linear function, as the system is composed there of two phases approxi-
mately not interacting. The question for the gé with non-linear U‘(ﬂé) (one
phase mole fractions) is the valence problem (or stability problem) of the
chemical system (see appendix 1)

This problem might be solved deductively by calculation of U from the mi-
croscopic description of the system by its Hamiltonian operator HX,X' which
is symmetrical and depends two times on the (positional and spin) coordinates
X of the members of the system of all electrons,{configuration), while the
coordinates of the nuclei are contained in H as internal variables which may
be determined by energy minimization. H defines an energy eigenvalue problem
permitting to calculate the eigen vectors Yux and eigen values u,and from the
vectors the hermitian pure states 15? ¥ uX';j@Qg} are formed which are com-
bined to the mixed state (or density matrix or Bonding) g&%?u) by the Boltz-
mann factor yﬂ:iéxp—g/gs(ag/ag) where ;‘1 is a normalizing factor and ky the

= ; ; , (VSN)
Boltzmann constant. The internal energy is then !VSN*JkX'ﬂX'X-XX' .

This calculation has been carried out so far for very simple molecules
only, therefore numerous models have been devised for an inductive valence
problem solution, which accepts the decisive role of the bonding and infers
from the knowledge of the empirical data special features of the bonding and
uses them for a classification of bondings into bonding types (bindings).

The following influences on the phase stability have been investigated:

(1) Volumina and radii of atoms (34Biltz,56Laves)
(2) Electrical charge of atoms (18Madelung,54Born,75Urusov,810'Keeffe)
(3) Electron density redistribution (76Miedema,81Johnson}
{4) Pair potential of atoms (74Machlin)
(5) Energy bands (34Mott.& Jones, 67Rudman)
(6) Valence electron concentration (62Hume-Rothery & Raynor)
(7) Shell occupation in atoms (64,69Engel,67Brewer,73Samsonov)
(8) Covalent bonds (27Heitler & London,39Pauling)
(9) Spatial correlation of electrons (11Haber,26Hume-Rothery)
(10) Plural-correlations model (64,80Schubert).
Besides these models also surveys of phases have been written which ad-

—
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vance various explanations of valence phenomena:

34 Goldschmid: Crystal chemistry,

34 Hassel: Crystal chemistry,

35 Dehlinger: Structures of metallic phases

41 Niggli: Crystal chemistry of inorg. phases,

54 Bokii: Introduction to crystal chemistry

55 Amer.Soc.Met.: Theory of alloy phases,

58 Massalski: Lattice spacing relationships in alloys,

63 Beck: Valence problem of transition metal alloys,

63 Laves: Factors governing the structure of metallic phases,

64 Schubert: Crystal structures of two component phases,

65 Hulliger,Moser: Bond description of semiconductors,

65 Massalski: Alloying behaviour and effects in concentrated solid solutions
6
69 GieBen ed.: Developments in the structural chemistry of alloy phases,
6
7
72 Pearson: Crystal chemistry of ally phases,

~

Westbrook: Intermetallic compounds,

(=]

IstNaray-Szabd: Inorganic crystal chemistry,

P

Gladyshevkii: Crystal chemistry of silicides and germanides,

72 Povarennikh: Crystal chemical classification of minerals
75 Wells: Structural inorganic chemistry,

76 Hulliger: Crystal chemistry of layer type phases,

77 Kripyakevich: Structural types of metallic compounds,

80 Bennett: Theory of alley phase formation,

80 Harrison: Electreonic structure of solids,

81 Simon: Condensed metal clusters,

8
83 Bennett, Massalski, GieRen: Alloy phase diagrams

~

Gladyshevskii, Bodak: Crystal chemistry of rare earth alloy phases,
83 WeiR, Witte: Crystal structure and chemical bond.

Assessing valence models by simplified statistics

To get an overview of the muTtitude of valence models it should be apprecia-
ted that an inductive model aims only at assessing the one-phase compositions.
Therefore the exact microscopic energy calculation may be essentially sim-
plified.

(a) from the virial theorem, —gP
yrot

otzzgkin p0t+Ukin

» 1t is seen that U= and
, the expected potential energy, are both low or not low, so that for an
assessment of stability it is sufficient to consider only Epot. This allows

that only the diagonal of the density matrix needs be examined which is the



probability density function of the electron configurations D A minimum
theorem is not valid for gp° . The electrostatic lattice theory first made
use of this simplification.

(b) From the invariance of DX under exchange of coordiante vectors X and
from the fact that HpOt is a sum of contributions h(gﬂ) and h' (x X .) where
h and h' do not depend on n it may be concluded (56LGw) UpOt Jx %, E[hfxﬂ+
( x4 x,‘]f (QSN) where NE- number of electrons of‘%he system and
I —X ). Qx l is named the two-electron reduced density function of

2.

the electrons or br1ef1y the spatial correlation of the electrons (see appen-

dix 2). When ﬂPOt does not depend on gpin it is simplifying to reduce also
over the spin coordinates.

(c) The fact that in chemistry the concept of valence electrons is very use-
ful, shows that the system of all electrons is composed of subsystems ex-
hibiting strong interaction within the system and weak interaction between
different systems . The spatial correlation will therefore be a (symmetrici-
zed) product of subcorrelations. Only the actual binding analysis can suggest
how many subsystems are essential for valence in a given mixture.

The reduced density functions form a sequence of concepts to judge the
valence mode]s, for instance the one-electron density jx _*1 % ed
from Q but QFC does not follow from QEd. Since atomic ?ad11 gnd atomic char-
ges are properties of the di fuctions it may be said that the valence models
(1) and (2) belong to the Qed function and are therefore not sufficient to
form a satisfactory valence model for metallic phases. The same is valid for
the redistribution and pair-potential models (3), (4). The bandmodel (5) has
a set of basal wave functions but the consideration of the density matrix is
quite unsatisfactory. The valence electron concentration model (6) foreshadows

follows

the extension of a valence electron correlation over the whole crystal. The
shell occupation model (7) foreshadows the existence of several electron sub-
systems (valence electrons b, d-dectrons e, peripheral core electrons c¢)and
therefore the coexistence of several correlations b,e,c, in a crystal; and
the covalent bonding model (8) is related to the spatial correlation of elec-
trons, but this relation is very unhappy as it dismembers the crystalline
spatial correlations into numerous molecular spatial correlations which are
independent from one another, i.e. which do not interact,contrary to reality.
The model (9) shows that the idea of a spatial correlation is nearly as old
as  our century and the model (10) tries to expound a synthesis of the
earlier models. These earlier models describe parts of the valence phenomenon,
their essential results therefore will be conserved. For instance the system
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of atomic radii serves satisfactorily since more than half a century for
examination of acceptability of structure proposals, and this important use
will not be changed.

The plural-correlations model (64,74,77,80,81,82,835ch)
The concept of a spatial correlation may be studied in a quite simplified

system. A one dimensional space in form of a circle with radius 1 contains
two electrons. The configuration-space, being incidentally the pair-space
here, is a square with edge 2%. The spatial correlation 9§c for the case of
strong repulsion of the electrons consists of two stripes parallel to the
diagonal of coordinate-equality (Fig.l). A section of Qéc for Xq=const may
be considered as a momentary configuration. The electron density of this

system is constant and completely cenceals the strong correlation. It becomes
apparent here, that a redistribution of pair density may perfectly conserve
the electron density. However, another density, the averaged spatial corre-

lation ggvzfqu;;.xd+x clearly exhibits a peak for x=X. If now in the circle
at x=X a nucleus with positive charge is fixed, the pair density, the elec-
tron density, and the averaged density change distinctly, but the spatial
correlation peak remains (Fig.1l). Even if the attractive center is quite
strong the electrong"feel" the allotted space and form their spatial corre-
lation. The peak hight decreases, as much density flows into the unessential
peaks which are caused by the nucleus and do not have any susceptibility to
rearrangement and therefore do not influence the energy of formation. It is
striking how small a fraction of all configurations make chemistry. The con-
tinuity consideration of Fig.l suggests clearly that a lattice-like spatial
correlation exists and is decisive for the bonding. The bond formation con-
sists in a rearrangement of electron pair density in the peripheral ranges
of the atoms although the electron density is there quite low. The fact that
the electronic fundaments of bonding become so transparent in the plural-cor-
relations model is a gratifying advantage as compared with the band model,
which must seek the correlation in a high]y complicated configuration inter-
action. The very simple influence of the allotted space on the correlation
remains hidden also in the valence bond model and its derivatives. The little
stripes at the bonding %€ are in fact the little clasps which cause the
bond formation according to the early chemists.

The results of the simplified system may be extended to crystals. In thecase
of strong dilution a valence electron system can be in the state of a
Wigner-lattice (74Mot,75Car) found in VOM e.g. but for higher densities spa-
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tial correlation is liquid-like i.e. lattice-like only in a limited range.

The in of the valence electrons (b electrons) is therefore lattice-like for
sma]]’ﬁ,and goes over for larger x into the electron density as there is no
more interaction. The limit between small and large X, the range of the spa-
tial correlation b, is about 508 (64Sch) as may be concluded from largest
lattitk constants in shear structures (64Sch,69Wad,79Cow,82Gru). The comparison
of the spatial correlation with a lattice (via gavj requests three specifi-
cations to be advanced.

(1) The lattice say of the b correlation should have a type, say the face
centered cubic type F (see appendix 4). Possible other types are the isometric
lattices which have three linear independent smallest distance vectors. The
circumstance that all concievable isometric lattices in fact occur in nature
represents a surprising crystal chemical rule.

(2} The lattice cell b should have a certain volume. The number of b sites
should equal the number of b electrons in the cell.a i.e. the b Tattice should
be completely occupied. If the b correlation is fully occupied, then during

phase formation a rearrangement of electron density must occur. This idea has
been used by Miedema 1976 in his theory of heat of formation. The full occu-
pation may be assumed frequently also for the e correlation (see below), but
it is not possible for the c correlation. When the atomic cores do not touch,
as in Na,it should be assumed that the spatial correlation between ¢ electrons
of different atoms is generated by the e or b correlation.

The phenomenon of shell occupation by electrons of prescribed spin (Hund's
rule) is valid also in cystals. It may be suggested to speak of "Hund inser-
tion": in a bp correlation of spin up electrons a spin down electron may be
inserted into an octahedral interstice. It is perhaps appropriate to take the
Hund inserted electrons as a new ensemble, as in VOM phases Wigner-crystalli-
sation of these electrons has been observed {71Goo,85Sch).

{3} The cell b should have a certain orjent ation to the crystal cell a.

This is given by a commensurability g"l

a=K', and K' is energetically favour-
able when its elements are inte gers, because in this case together with one
electron there is a large set of electrons in a favourable position. When not
all elements are integers, then as many as possible should be so (appendix 3).
As mentioned before, besides the b system additional systems may in-
fluence the bonding. A system e of d electrons forms an e correlation
which is frequently fully occupied, and the peripheral szp6 electrons of the
core form a ¢ correlation which is not fully occupied but nevertheless has an

influence on the bonding. The bonding type (binding) is therefore described
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by a=bK'=eK"=cK'"' and it may be said the systems a,b,e and ¢ are in harmony
when the commensurabilities K are favourable.

The harmony of several correlations in a phase implies a statement on the
number of electrons contributed by the components to the correlations, the
electron count. A1l valence models use an electron count, but since earlier
models exclusively considered the valence electron system , one contribution
only per component mattered. In the plural-correlations model there are two
or three systems which influence the bonding and therefore two or three con-
tributions per component must be found. The electron count is related to the
spectroscopic shell occupation but it is not identical with it. For instance
for Ti the shell occupation is 3pPd%s? while the electron count is 7§13
vhere the exponents refer to b,e,c. The electron count is a parameter of
choice, from which depends whether the binding analysis will be easy and pro-
bable or difficult and improbable. For Ti e.g. it is important that V' *"’
yields a good binding @ZDSCM.In 2 compound it must be found out how the shells
of the components combine to subsystems. For the mixture T1'0M it was found for
instance (88aSch) Til»3:80:6+2

O

system  together with the valence electrons of 0. The earlier valence models

, meaning that the d electrons of Ti form a sub-

attempted to read the electron count from the chemical formula, for instance
44 2-
Ti

O2 . This count did not provide an acceptable plural-correlations inter-
pretation, while the above count allowed to find interpretations for most of
the intermediate phases (8§uSch).

It is a remarkable result of the binding analysis that commensurabilities
which have in three directions integral elements are not the most frequent

ones. Very often commensurabilities occur which have integral elements only in
two directions. As the two-directions condition is less restrictive than the
three-directions condition, it contains more binding possibilities. Further-
more the two-directions condition Teaves the physically important fact of
interference of the a periodicity with b or e periodicity. This interference
may stabilize a wave of momentary electrical dipole vectors which cause a
shear structure i.e. a crystal structure containing a system of equidistant
and parallel shear planes which devide the crystal into slabs each being
sheared by the shear vector against the foregeoing slab (see appendix 5). The
frequent occurrence of shear structures is an indication for the existence of
spatial correlations with commensurabilities having integral elements only in
two directions.

The correlations b,e,c do not have all the same influence on the bonding.
Therefore it is convenient to select the two most influencial correlations, say
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a=bcK'=e K'(2), and deduce from thema brief binding name FBZ where F is the
type of the b correlation and B is the type of the e correlation and 2 is

the first eigenvalue of gélgF. The example implies gflgf(Z), a factorial com-
mensurability; this is especially favourable as it permits a good avoidance
of e and b and it is therefore named a factorial harmony. The site number
ratio i.e. the ratio of number of sites per a cell in the e correlation S(e),
to the number of sites per a cell in the b correlation S(b), written as

ﬁg%é%) is a helpful measure of a binding; for FB2 it has the value 4, and it

is an experience of binding analysis that ﬁéséb)

(N3) is a smooth function. To
every brief symbol of a binding there belongs a ﬂg%é%) value so that the
knowledge of a binding for a given phase strongly 17mits the pessible bindings
for neighbouring phases because of the smoothness of the site number ratio

function (appendix 6).

Can an assessing model be of value for chemistry?

The p]ura]—corre]ationgmmaaé1uEgﬁNEETJ_BE_EEEE—?Er assessing one-phase compo-
sitions, it cannot be a substitute for energy calculations as it is based on
simplified energetics. However, there was always a broad demand for simpli-
fied models as they directed the attention to the essential influences. The
experimental chemist wellcomes simplified models as they give him suggestions
for planning experiments. The theoretical chemist is interested in well-
working simplified models as they give him an easy overview on the ample em-
pirical data and as he perhaps may incorporate concepts of the model into

his calculatory work, or as he may deduce assumptions of the model from the
general theory.

The plural-correlations model is not purely qualitative as the statement
that in a phase there is some bonding type realized, is more quantitative
than earlier statements that the bonding is more metallic or more covalent.
Even the binding statements can be further developed in future by making more
quantitative use of the spatial correlations which are here only classified.
Also the step from the spatial correlation to the two-electron density ma-
trix might be performed some day, however, the first step should be done
before the second.

At present the question is of interest whether the correlations are in-
deed realized i.e. whether the model is near to reality. It is an old diffi-
culty that a model may contain hypotheses which are not yet fully justified.
Direct experimental proofs consisting in an analysis of the feet of single
crystal reflexions are missing at present, so that indirect proofs must be
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considered. A phenemenological model can be confirmed by application to the
empirical data; when its interpretations appear natural, easy and instructive
then it confirms itself, i.e. the confidence into the useful ness of the
model comes from the number of plausible interpretations. The development of
the plural-correlations model is a continuation of the earlier phenomenalogi-
cal valence models, the method of inductive analysis remains the same. In-
ductive research always coexisted with deductive research and there was a
permanent interaction between both methods of investigation. Understanding
the multivarious possibilities of deductive calculations leads to agreeing
that valence ideas assist the search for appropriate calculation methods.
Another indication of proximity to reality is presented by the fact that
the model leads to new statements. This becomes visible in the comparison of
different interpretations. It appears tempting to assume a correspondence
between the bands of the band model and the Systems  of the correlations
model. First it should be agreed that chemical reality may be described by
different models, neither the band model can be disregarded nor the plural-
correlations model can be declared as inadmissible. The only considerable
point of view is, which model is more useful for a given purpose. For the
calculation of the energy the pseudo potential derivative of the band model
has proven quite successful, but for the assessment of the energy of forma-
tion and for the attribution of a bonding type a favourable issue was not
presented. As an example, the existence of lacunae (constitutional vacancies)
in VO and homologic phases had been explained (84Schw) by an idea, used
earlier for N12A13(4?Sch), that the occupation of higher bands should be
avotded. The plural-correlations model on the contrary found the cause for
the lacunae in a good commensurability of the binding to the cell a {85aSch).
While the spatial correlation interpretation presented at the same time
bindings for most of the remaining VOM phases, an analogous rationalisation
had not been afforded by the band model. The concept of commensurability is
missing in the band model as the configuration interaction is omitted in
most calculations although it is inevitable,strictly spoken. Surprisingly
the band occupation assumed does not simply correspond to the subsystem occu-
pation. The V4s band of VO is assumed to be empty (71G00.230) but the V4s sub-
system is occupied by 1 electron per V (85aSch), The 02sp band is complete-
ly occupied and separafed from the V3d band, but the 02sp shell is not com-
pletely occupied and the 02sp and V3d electrons form a common System in the
correlations model; the V3sp band is not considered as essential for the bond-
ing but the V3sp+OQls system appears to have some influence on the bonding.
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The differences between bands and subsystemscome from the binding analysis,
so that with the noted assumptions the analysis of VOM was successful, while
with the band model assumptions the binding analysis was not successful.
Sometimes a band calculation is named a first principle calculation (84And),
but this distinguishing designation should not conceal the fact that differ-
ent energies of electron sets remain possible as the configurational in-
teraction of the waves and the interactions with the core electrons may
change the energies.

The plural-correlations model is not yet very finished. Therefore many
interpretations should perhaps be improved, however, as a first start into
the application of the plural-correlations model to the crystal chemistry of
metallic phases (or two-component phases) the analyses collected in appen-
dix 8 may be helpful.

APPENDIX

(1) Thermodynamit designations and representations

U= internal energy Ek= mele fraction of component k
V= volume My internal variables
S= entropy M= unspecified mole number

N mole number of componentk

The experimental chemists prefer as thermodynamic constitutional function the
Gibbs energy G which is a Legendre transform of U and depends on the vari-
ables T=8U/3S, P=3U/8V and Ny, Ny. Any statement in the U representation may
be transformed into a statement in the G representation. The advantage of the
U representation is its simple relation to the statistical theory of chemi-
cal systems.

(2) Statistical designations and names

H = energy operator 9XX‘= density matrix of electrons

A5 spap. aud Spagisl caopdinotes density function of electrons

e EpardTRptEs OF the &lection b §C- spatial correlation of el.or bonding
hh'= contributions to Hpo Q_ V- averaged spatial correlation
%ganumber of electrons 2ed= electron density

Ne™= number of all el. of an atom
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In statistical theory a probability density depending on two variables may

be named a correlation (cf the concept of correlation coefficient), if the e-
quality of the variables has a physical meaning. Otherwise it should be named
a density in a polydimensional space. Unfortunately in chemistry the differ-
ence between real energy and Hartree-Fock energy has been named "correlation
energy" irrespectively to the fact that the Hartree-Fock wave functions con-
tain much spatial correlation because of their antisymmetry under exchange of
electron coordinate vectors. It therefore appears advisable to use the name
"Hartree-Fock excess energy" in chemistry.

{3) Binding analysis designations and matrix notations

,d.= distances in the Eav functions

= number of atoms per a cell

a= crystal cell (matrix)

= Eé_n.

3= crystal cell edge (matr.column)

=

b= cell of valence el.correlation ,N/E,N/E= number of el. per a cell

e= cell of d-el.correlation

o o

447

p)= number of b sites per a cell

= number of b el.per atom,b concen-
tration

P

= | =
~N

c= cell of corr. of periph.core el.

a 15.: homeotypiC commensurability
a=K'= valence electron comm. to a H§22£; number of b sites per atom

sl
"

-
E

ternal commensurability ES(éT): number of e sites per b site
=bK'=eK"=cK'" is a binding -

-

Phases with the same binding may be named jsodesmic, and phases with closely
related binding may be named homeodesmic.

The commensurabilites are expressed by (three by three) matrices, therefore
an abbreviated matrix notation is used which is essentially quite old in
crystallography. In the matrix §7§ﬁ1=(511’312’3131521"";331"") the index
i refers to an orthonormal coordinate system and is mostly omitted; the index
1 numbers the edge vectors and may incidentally indicate the type of the
Bravais lattice belonging toc a. An H before a numerical matrix or behind the
last index of a symbolic matrix indicates that i refers to a hexanormal co-
ordinate system. Analogously MR indicates a monoclinic coordinate system and
ZuLB,]p a triclinic system. For certain purposes it is preferred to refer a
monoclinic cell to an orthonormal coordinate system. The following abbrevi-
ations are useful (311,0,0;...):(341;...), (..,;0,222,0;...)=(...;gzz;...L
(311;511;333)=(311;333), (311;a11)=(311)' Furthermore it may be written
(2,1,0;—1,2,0;1):(V5;1); where 5=det(2,1;-1,2) and r is a rotation matrix
which may be omitted for the present purpose. Similarly sometimes permu -
tation matrices are dropped.
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The hypothesis that D®¥ is lattice-like does not imply that say the b elec-
trons "form" a lattice; the b electrons "form" the pair density Qii,xz which
gives the energy; the Q?V density serves here for classification purposes.
However, a momentary configuration of QSC may be compared with a deformed
lattice in a certain translatoric position to a.

(4) Crystal chemical designations
Homologic classes of chemical elements may be designated (71IUP) as A

! (al-

kali elements), AZ,Aa,._,Alo,Bl,d.,BB(nob1e gases). This sequence determines
the sequence of elements in the formula of an intermediate phase. Scmetimesa
simplification in the designation of phase classes is possible by the con-
vention Bm=AlD+m.

Phase designation. The chemical formula is composed of elements in the se-
quence of homologic classes,or if these are the same,in the sequence of atomic
number. Separated by a point are affixes 1ike p=high pressure phase, h=high
temperature, r=room temperature, 1=Tow temperature, i=impurity stabilized,
m=metastable phase. A chemical two-component formula with the unspecified
mole number M as index designates a mixture (alloy or ceramic).

Structure types are designated by the formula of the prototype added in
brackets to the phase designation. If the phase itself is a prototype then
the Bravais group in the designation 75AST and the numbers of atoms in the
primitive cell (separated by a point) give a useful description. The Bravais
group symbols are

C,B,F = cubic primitive, body centered, face centered,

T,U = tetragonal primitive, body centered,

H,R = hexagonal primitive, rhombohedrally centered,

0,P,Q,5= orthor.prim., body cent., one face cent., all f. centered,

M,N,Z = monoclinic primitive, face centered; triclinic.

Sometimes the addition of these symbols to a vyare prototype helps memory.
Phases with same (cosely related) structure type are named isotypic (homec-
typic).It is also of help to add to the type indication a Structure Reports
(SR) reference containing numbers of volume and of page.In crystallography
more recent Bravais group symbols (67Pea) are used which are not appropriate
for the present purpose as they are longer.

Homeotypisms of the following kind are described by a brief symbol:
R=replacement of atoms, L=lacuna formation, F=filling of interstices, D=
homogeneous deformation, [=inhomogenecus deformation, S=shear of layers,
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C=chain shear. These symbols may be placed affixing htp (=homeotypic to) be-
fore a prototype formula.

(5) Shear structures as indicators for non-integral commensurabilities

The well-known phase CujAu with the cell a' has the valence electron concen-
tration ﬂéAzl and the valence electron correlation §f=EF(l). [f by statisti-
cal subtitution of Zn for Cu the valence electron concentration is increased,
the favourable commensurability of b to a'in CujAu is conserved for Cug_
Auny in a; and gi but changed in a3 . Therefore a tetragonal shear struc-
ture cell a=a'(1;1;L) is formed (55Sch) with L=shear length obeying the em-
pirical relation 1/L=ﬂbA—1 or L+l =E4AL. On the vector a5 there are distri-
buted L atoms and L+1 electrons of the b correlation. The b correlation is
compressed inthe mﬂlnf [001]" direction (64Sch). If on the ay vector the L
atoms are plotted as equidistant little circles and the L+l electron sites (of
a momentary electron configuration) as equidistant points, it may be seen that
half of the atoms have a positive dipole vector and half of them a negative
vector in ay direction. Since Au and Cu (drZn) have a different polarizability
it may be said that Au bears a difference dipole vector and Cu (or Zn) not.

In the shear plane 33‘0 the positive and negative vectors face each other, so
that the energy is lowered when the crystal at positive values of X3 (the
coordinate be]mghgto 53) is sheared by the shear vector (31+§2)/2=§7against
the crystal at negative X3 values. This crystallographic shear should not be
confused with the distributed mechanical shear. It is seen that after the
shear plane 53:0 the next shear plane is 53=O.5. Besides the above interpre-
tation of the shear phenomenon, which makes use of the spatial correlation,
another explanation based on the band model has been advanced (65Sat,79Cow).
As the band model omits the configurational interaction, the latter inter-
pretation cannot be considered as acceptable. While the spatial correlation
interpretation could be extended to the shear homeotypes of MgCu2 (84Sch),

an analogous explanation by the band model is not known.

(6) Valence rules useful for binding analysis

Rule of octet (23Lewis). In compounds of electronegative anions the valence
electrons of the cations frequently complete the anion octet. (This allows an
optimum spin compensation i.e. occupation of low energies).

Rule of b electron contribution (31Ekman). In a brass-like mixture an A" ele-
ment with 6<n£10 does not contribute b electrons, but (58Vog) A" with 34ng6
contribute n electrons.
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Rule of electron supply (32Zint1,63Klemm ). In ABM phases with electroposi-
tive A atoms the A supply their m electrons to the B" atoms so that the B

n+m

partial structure becomes homeotypic to a B element. (The influence of the

A core on the structure is small).

Rule of volume (64Sch.169). When the valence electron concentrationi:BB&
phases increases while other parameters remain constant, the atomic volume in-
creases as the structure becomes more loosely packed. (The increased energy

of the b system partially increases the energy of the e and ¢ system )

Rule of volume of formation (02Richards,51Kubaschewski). A negative volume of
formation causes a negative energy of formation. (The b electrons enter a

lower potential energy so that by the virial theorem the energy decreases.
V(ﬂé) is mostly smooth, exceptions are AloAlm, see 82E11).

Rule of heavy components (835ch.43). When components with many core electrons

are mixed to components with few coreelectrons an extra contribution to the
energy of formation is found. (The highly filled peripheral core shell ex-
pands in the direction to the Tight atoms).

Rule of lacunae (37Bradley). When in a phase with a good binding the valence
electron concentration is increased by alloying then the number of valence
electrons per cell may be conserved by lacuna formation in the partial struc-
ture of the electron peor tomponent. (Lacuna= chemically caused vacancy. The
spatial correlation of valence electronsis conserved.)

Rule of strain (64Sch.70). wh%p in a hexagonal or tetragonal structure the
commensurability 9?13 is goaé’thén‘with valence electron concentration often
the axial ratio |§3l/l3]} is increased (to get more sites in the b correla-
tion).

Rule of shear {645ch.99). For approgriate commensurabilities in a structure a
system of electro dipoles at atoms may develop, the energy of which may be de-
creased by a crystallographic shear.

Rule of distribution of B" atoms (75Wop). A g" component in a A'IElU matrix
tends to most uniform distribution. {The B atom contributes all b electrons

so that a uniform b correlation causes a uniform B"distribution).

Rule of correlation types (645ch.68). A correlation type is a Bravais lattice
with three independent shortest vectors (isometric): C,R,B,F,U,H. The Tattices

may be used in unconventional aspect: CH’RQ‘BH’FH’UH’HT’HQ’ which also may be a
pseudo symmetry.
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Rule of correlation type occupation (74Sch). The b correlation type is always

fully occupied. The e correlation type is fully occupied for an e concentra-
tion géﬁze, for higher concentrations Eé&glﬂ occupations of 83+15% have been
found.” For the ¢ correlation occupations 50+25% have been found. (The latter
correlation is mediated by the higher correlations.)

Rule of commensurability (64Sch.68). The matrices E_lg, g'lg, etc. have most-

ly integral elements. If gflg=g;integer number, the commensurability is named

a factoriality. The factoriality is especially favourable, it often 1eads@Bﬁnlb
a congruent melting point of the phase. The correlations b or e may be twinned
in a and generate a higher symmetry.

Rule of electron distances (745ch). The smallest distances gb’ ge’gc of the
averaged correlations form in a given mixture a smooth function of the mole

fraction. For the chemical elements the distances are shown in Fig.2. It is

apparent that the d strongly depend on the electron count, therefore Fig.2
can only be a first suggestion. Furthermore d depends on the correlation type,
d decreases with decreasing cocrdination number in the correlation.

Rule of correlation site numbers (83Sch). The number of e sites or c sites per
atom N/Ae) or yé?c decreases with decreasing ﬂéA, with increasing atom num-
ber EE and with increasing external pressure. The site number ratio Eg?é%)

is a monotonous function of gé. -

Rule of neighbouring phases with the same site number ratio. In these phases
the higher valence electron concentration causes the closer packing of the b
correlation.

Rule of Hund insertion (64Sch.187). Hund's rule (25Hun) is not only valid for
atoms in the gas state. In the solid state the occupation of a nl shell by a
spin down electron while the shell is already fully occupied by spin up elec-

trons, takes the form of "Hund insertion" of a spin down electron into a cor-
relation of spin up electrons. The Hund insertion makes the binding analysis
of typically inorganic structures complicated, as an atomic distance with
Hund insertion is similar to a van der Waals distance.

(7) The method of binding analysis

Before the binding analysis of a two-component mixture is started the bind-
ings of the components and the electron count should be known. A binding ana-
lysis of the chemical elements (74Sch,82bSch) gives distances for the elements
(Fig.2), but in alloys the electron count depends on the other components and
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Tab.1:Several plane commensurabilities K and numbers N of small meshes in the
large mesh - -

1. Tetragonal

(10: 0.1
15 -1.1)

1 18
2
20; 02) 4
5
8

20
25
25
26
29

40
41
45
49
50
50
52

(21:-12)

(22;-22)

(3.0; 03) 9
G,;-1,3) 10 N
(3.2;-2,3) 3 34 53
40; 04) 16 6,0, 0,6) 36 58
“41:-14) 17 6,1;,-1,6) 37 (6,5;-5.6) 61

2. Hexagonal

K
(1.0; 0.1)
(1,1;-1.2)
(20: 0.2)
(21;-13)

N K N K N
1
3
4
7
(3.0, -03) 9
12
13
16
19

[CREE ) 21 (4,4;-4.8) 48
5,0 0.5 25 (5.3,-38) 49
. 7- (.00 0.7) 49
28 6.2,-28) 52
31 (7,0,-1.8) 57
36 (54:-49) 61
37 (6,3;-3.9) 63
3 (8,0; 0.8) 64
43 (7.2:-29) 67

(2.2;-2,4)
(3.1:-14)
4.0; 04)
(3.2;-2,5

Tab.2: Several bindings with corresponding Né?é%)

320 BC4
210 cc3 HH3 BE3 uul FF3
2.1 UB3
16.0 CB2 FC4
14.0 FUU2
13.5 BC)
12.5 CHFH3
1.3 CFU2 BC)/8 FUB2
9.8 HFH2
98 HTFU2 BU2
9.2 HUH2 ucy's
8.6 BHFH12
80 ce2 HH2 BR2 uu2 EF2
7.5 FHUH?2
7.0 HTC2 UHH2
69 cu)2 BHFH3
6.6 FI{H2
6.5 UB2 FUHT2
6.3 HEFHY3 BHUH3
6.0 HUH}/3
6.0 HTU}2
56 CB)/2 BFU2 Fuc?
55 BIH3 UHFH}/3
$ CHCH/3 HH BHBH|/3 UHUH)3 FHFH)3
50 HTB)2
49 HBHI Fu2
49 FHUN}3
46 BHT2 UFU2 Uurnys
as UHHJ/3
43 UHBH1 FHEY3
40 CF1 BC2 FB2
38 BHH]T UHT2
3.5 HTFU}2
33 CHT}2 uc? )
28 ccy2 HTHT}2 BB}/2 uu)2 FFY2
20 BE1 FC2
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therefore the electron d1stances may differ from Fig.2. In the mixture T1PtM
0 loforlg >08 Pt contributes valence electrons
therefore at 5#50.75 the 1ncrease of d (Eit) with increasing Hﬁt stops and
remains constant up to —Pt'l (85bSch). A similar effect was found in PtSnM
for small N (SSCSch)

From the and d (or d ) values of the components the d values for an

e.g. with the count T1

intermediate phase may be found by interpolation in a d(N ) diagram (d varies
from 1...3R with 4d=0. 2R corresponding to 1 cm, and Nz_ varies from 0...1
with Aﬂz-o.l corresponding to 1 cm). Introducing such a value into an iso-
metric cell (say b) gives the b cell edges which may be compared with the
cell a. It canmit, bgexpected that a4 and gl are parallel, but it may be expec-
fed that the meshes a,,a, and b;,b, are commensurable. Here helps the Table 1
of plane commensurabilities. When a probable commensurability is found then
from 3y the probable by may be calculated and inserted into the g(ﬂé)
diagram. Next the stacking of 91,92 is to be determined so as to satisfy the
rule of correlation type occupation; this determines the type of b. A simi-
lar analysis determines the type of e and from both the site number ratio
Né?é%) may be inferred. The Hésej'(ﬂé) curve should be monotonous and smooth.
The extrapolation of this curve to the next phase yields a value which permits
to determine few possible bindings from Tab.2.

(8) Examples of binding analyses

Chemical elements: Acta Cryst. B30(1974)193-204, 7.Metallkd.73(1982)594-595
Two-component Li compounds: Z.Metallkd.74(1983)111-117
Two-component Be compounds: Z.Metallkd.73(1982)403-408
Two-component borides: Comm.Math.Chem.13(1982)113-127
Two-component carbides: Monh.Chem.113(1982)651-667
Two-component nitrides: Cryst.Res.&Techngl. 17(1982)553-567
Two-component oxides: to be submitted
Two-component fluorides: Comm.Math.Chem.13(1982)55-74
A"AL: "+ “phases: ibid. 15(1984)213-225
A"AZ*Y phases: ibid. 16(1984)191-207

A"AL)  phases: ibid. 16(1984)209-223
A8l phases: ibid. 15(1984)159-175
A"Ba phases: to be submitted
A B% phases: Comm.Math.Chem.15(1984)177-212
A"BY,  phases: ibid.13(1982)75-111
A"BY  phases: ibid.17(1985)219-254



Ant phases: to be submitted

On
On
On
On
On
On

the
the
the
the
the

bindings
bindings
bindings
bindings

in the crystal phases of Mn: Cryst.Res.Tech.in press 1985
in MoReM phases: Z.Metallk.75(1984)175-178

in NthM phases: Z. Metallk. 76(1985)326-329

in TiPtﬁ’phases: J.Materials.Sci.Letters 4(1985) in press

shear homeotypism in the MgCu2 family: J.501.S5tate Chem.53(1984)246452
binding and superconductivity in isotypes of Crasi: Phys.Stat.Sol.(b)129

(1985)219-226

binding in transition metal disilicides: J.Sol.State Chem.43(1982)97-0§

in PtSnM phases: submitted

in P.r, P.h, and homeotypes of P.r: submitted

in RDI homeotypes of As: to be submitted

in VPM phases: Chem.Script.24(1984)143-146

in T1§M phases: submitted

in VOM'bhases: submitted

in AT 2 silicates: Neues Jahrb.Miner.Abh.146(1983)210-220

phase diagram InSM: Z. Metallk . 76(1985)358-364

of publications thhtqurhmnta] content and early binding interpreta-

T.W.Richards: Z.Phys.Chem.40(1902)597,49(1904)15

990

FHaber: Verh.Dtsch.phys.Ges.13(1911)1117,1128;5.B.PreuB. Akad. (1919)506,
E.Madelung: Phys.Zeits.19(1918)524
G.N.Lewis: Valence and Struct. of At. a Molec.

Am.Chem.Soc. Monographs (1623)93 Chem.Cat.Co.

.Hund: Z.Physik 33(1925)345
.Hume-Rothery: J.Inst.Met.35(1926)295-361
.Heitler,F.London: Z.Physik 44(1927)455-472

Z.Phys.Chem.B12(1931)57-78

.Zint1,W.Dullen Kopf: Z. Phys.Chem.B16(1932)195-205

Raumchemie der festen Stoffe, Leipzig 1934, Voss Verl.

.M.Gddschmidt: Handwdrterbuch d.Naturwiss.15(1934)1128-1154

Kristallchemie, Dresden 1934, Steinkopff
H.Jones: Theory Prop. Metals a.Alloys,0xford1934, Univ.Pr.

On the

On the bindings
On the bindings
On the bindings
On the bindings
On the bindings
On the bindings
On the bindings
On the

A Tist

tions, see 80bSch.
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