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In the preceding note [1] of this series a procedure for a syste-
matic generation of the central moiety C of a particular variant
of TEMO model 3 was presented. This procedure has been termed
C-formation. A kit of structures [Fj} useful for this procedure
was also given in [1]. The individual members Fj have been either

derived from a general structure G, or generated from these by

0
C-formation. At the end of this note it was mentioned that the

following C-moiety

C= c?f - ¢ o 3029 (1
f e

cannot be derived from the general graph G neither directly nor

o’
by means of C-formation.

The C-moiety given above is obviously homeomorphic with the bi-
cyclic graph G shown below and is obtained from G by taking

Kk =p=v =0 and A = 2. For the reasons discussed in some de-
tails in [1] we have been interested in whether some additional

moieties, perhaps useful for C-formation, could be derived from G.
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In order to test these possibilities we expand G - G in terms of

P where Pn denotes the characteristic polynomial of a path con-
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sisting of n vertices; in the expansion n is some integer formed
from the structural parameters k,A,u, and v. The result of this

is as follows

af__.a

At ghe = {2, #[R 0 B dp

Kk+2 u v K+1(Pupv—1+Pu—1Pv)+4P k

«Pu-1Py-111P P, - (2)

v

Although eq. (2) is obtained in a straightforward calculation, its
derivation is given in the Appendix because some transformations

involved are not obvious.

From G some C-moieties are derived; they are collected in Table 1.
Since k > O would cause the non-planarity of any unsaturated hydro-
carbon corresponding to G, kK = 0O is assumed for all moieties shown
in Table 1. As seen from eq. (2) this expression is invariant in
regard of an interchange of 1 and v; thus without any loss of ge-
nerality and completeness for the structures given in Table 1

u 2y is assumed. It might be noted by the way that an interchange
of u and v transforms any moiety into its side-inverted form [1].
As seen from Table 1 only one structure, Gj, exhibits the desi-
rable property AG1 Z 0. Obviously, AC = Caf = Cae 2 0O is achieved
if the C-moiety is produced by C-formation [1] according to

=G.®G, or C=G,. ® G, or C = G. ® G, where G. denotes the
¢ ] J J ] J J J

side-inverted form of Gj' However, the moieties obtained in that
manner correspond to commcn organic structures only if v = O in

Gj' Thus, the value of the kit represented by Table 1 seems to be

limited in comparison to that given in [1].



Table 1: Some C-moieties derived from G

{(for all examples ¥ = 0 is assumed).

AGj =G} - 6§°
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(2+1) 2 0

(x+1)2 - 2

x (x-1)2 (x+2)

30x-1)

x2(x2_1)

(x2-1% «2-3)

x2(x2-2) (x? -3)

2022+ 1)

x (x3+2x2-3x-2)

(x+1) (=12 [ (x41)2 (x=1)-2x]

x2[(x2-1) (x2-4)+2x]

x(x2-2) [x(x2-1) (x2-4)+2]

X (x2-1)[x(x£'-612+7) +2]
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Table 1 (cont.)

%] 4 0 0 @ 2 -5x2 41

15031 0 CID x2 (3x2-7)

%) 2 2 0 @ (x2-1) [(xZ-1)2-2]

w2 1 1 C@ xZ(x2-1) (x2-2)

8|1 3 0 CD x2(x2-2)2 (x2-3)

w12 1 @ Vel PN

200 0 4 0 @ (“-3x%41) [x% (x2-2) (x2-4)41]
21 0 3 1 Q} x2(x2-2)(x8-7x* +12x% -2)
2|0 2 2 @ (x2-1)2 (x6-7x* +11x%+1)
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Appendix

Here eq. (2) is derived. The polynomial AG = Gaf - g%e

af

is the diffe-
rence of two characteristic polynomials, namely G and G%¢, which
are uniquely determined by the corresponding graphs; thus, we use

these graphs in order to represent the polynomial AG as follows:

g—o-cs- o_o»é':}u—x»—o . g—o—o noi—o—o oo -
- gle - !
« 0D . .00 0O Hg é—o% 0—0—%—0—& oo =

AG At

il
2]

The vertices, which have been removed (i.e.: {a,f} and {a,e}, re-

spectively) are indicated by dots.

Iin the first step the graphs are partitioned at the edges indi-
cated by arrows. Since these edges are bridges Heilbronner's

formula may be applied:

$#(G,x) = »(G-e,xX) - ¢(G~n-v,x) (3)
where e = (u,v) is an edge of G incident with the vertices u and
v oand ¢(G,r), ¢(G-e,x), and ¢(G-u-v,x) are the characteristic poly-

nomials of the graph G and those graphs which are derived from G
by removing the edge e and the vertices u and v, respectively.

Thus one obtains:
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In the next step the graphs are partitioned at the bridges marked
by arrows. Partitioning the third graph from the left, one has an

N-membered cycle, N = k + A + p + v + 4 for which one inserts

cC. =P =-P = 2 (4)
Thus, in this step one cbtains:

ae= B 2A+u+v+4Pqu = Prontpr2f A+v+1Pqu-1] -

[p 1]

K+A+v+2PA+p+1pp—1Pv = P Pt P arue1FPu-1Fp-

[(PK+A+u+v+4 B PK+A+u+v+2 "Z’PAPUPV' PK+A+p+v+3PAPqu—7] 2

*® [PK+A+u+u+3PApu—1Pv - PKPAPA+u+v+2Pp—1Pv—11

These ten terms are combined as follows:
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AG = ZPAPqu .

¥ [PK+A+u+v+2pl AP oaapdved T pK+A+u+v+4pA)]pupv =
1P)c+}\+\)+2p,\+u+1 - PK+A+u+v+3PL\]Pu-1P\J -
(5)
[PK+A+u+2PA+u+I - PK+A+u+u+3pl]Pqu-1 ke
& PK[PA+u+IPA+v+1 - PA+u+v+2PA]Pu—1Pv~1 -

The terms of eq. (5) are transformed by means of the following equa-

lities:
Pree = PPy = PrqPyq v (6}
Preg = PrPp = “PrqPeg o &l
PPy = PriaPy-a = Pa-1Pr-gta-1 (8)

Eg. (6) is obtained by applying eq. (3) to a path with k+2 vertices.
Eq. (7) follows from eq. (6). Eq. (8) is verified in a straight=

forward calculation after inserting P, = sin(k+1)&/sind etc.

k
The first term of eq. (5) will be left unchanged. The square
brackets of the last three terms of eq. (5) are transformed accord-
ing to eq. (8). The second term is treated as follows: At first
eq. (7) is applied to the round brackets of this term, then eq. (8)

to the square brackets; so one obtains

(P mntptvi2Pr * Prionsprvra ~ PeadapsveaPad ] =

= PK+A+p+u+2Pk - PK+A+u+v+3pA-1 = PK+u+v+2
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All these operations transform eq. (5) into the following ex-

pression:

a6 = [ZPA t PK+|J+\)+2 B PK+U+1Pv—1 - PK+w+1Pu-1

B (9)

Kpu—ﬁpv—1]Pqu °

From this expression eq. (2) is obtained by means of eqg. (6).
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