melch no. 19 pp. 229-242 1986

TOPOLOGICAL PROPERTIES OF BENZENOID SYSTEMS. PART XXXVI

ALGORITHM FOR THE NUMBER OF KEKULE STRUCTURES IN SOME

PERI-CONDENSED BENZENOIDS

S. J. Cyvin

Division of Physteal Chemistry, The University of Trondheim,
N-7034 Trondheim-NTH, Norway

and
I. Gutman
Faculty of Science, University of Kragujevac, YU-34000
Kragujevae, Yugoslavia

{(Received: May 1985)

Abstract - A class of peri-condensed benzenoids may be generated from
the parallelogram-shaped benzenoids on removing hexagons along two of its
edges. An algorithm prescribes the assignment of a numeral to every hexagon.
The numerals give information about the number of Kekulé structures. The
algorithm is used to deduce formulas for some special cases: explicit for-
mulas for certain classes of V-shaped benzenoids, and a recurrence formula
for some triangular benzenoids. Finally the algorithm is extended to cases
where all the four edges of the parallelogram may be indented.

INTRODUCTION

An algorithm for the number of Kekulé structures (¥) for a single (un-
branched) benzenoid chain is well known.l Figure 1 shows an example. Here
the numerals were entered into the rings (contrary to usual practicel) in
such a way that the X value is obtainable by adding up the numerals (from
left to right}. The numeral 1 outside the first hexagon should also be
counted. This device has proved to be very useful, and it takes care of
the trivial case of K = 1 for "no rings". The algorithm has been extended
to all cata—-condensed (also branched) benzencids,1 and algebraic expres—
sions of K have been established.2 In the present work a similar algorithm
was produced for a wide class of peri-condensed benzenoids.

The K number of a reticulate, parallelogram—shaped (mxn) benzenoid is

well known.1'3 The case has recently been extended to the mxn + X case.h



QL X0

Fig. 1. Example of the algorithm - =
for X of a single benzenoid chain. K—‘+1+|+2"2+5+7"7+19-45

The presently considered class is a further generalization. However, the X
value is no longer available as an explicit formula in the general case,
but in the form of an algorithm. In special cases recurrence formulas are

available, and even explicit expressions.

THE CLASS OF BENZENOIDS

Consider a benzenoid with m linear chains of the lengths (number of

hexagons) £ T sy T These are the m rows. Assume the restrictions

zl
B L1 o= Ly By sy =L (1)
Furthermore, the chains should be "aligned", which means that the first
rings (conventionally drawn to the left) from all chains also form a
stright chain (the first column). Let this reticulate benzenoid be desig-
nated L(rl; Toi weeed rm). The defined benzenocids will be referred to as
belonging to class L. Figure 2 shows the example of L(5; 4; 43 2), or in a

slightly abbreviated form L(5; 2x4; 2).

BASIC RECURRENCE FORMULA

The present algorithm (see below) is based on the following recur-
rence formula, where ¥{B} denotes the number of Kekulé structures for a

benzenoid B.

Fig. 2. The benzenoid L(5; 2x4; 2).
The number of Kekulé structures (X)
is the sum of the given numerals.




K{L(rl; Pos eeees TG rm)}
= K{L(rl; LOTIRRRRE LS I D}
+ K[L(rl-rm; LN BRI Pm_l—qﬂ)} (2)

THE ALGORITHM

Introduction

The algorithm rules (see below) assign one numeral to each benzenoid
ring, along with the numeral 1 outside the benzenoid (as in Fig. 1). Fig. 2
anticipates the result for the chosen example. The practical rules for de-
ducing the numerals emerge naturally from the properties specified in the

following.
Properties of numerals

1. Total K number. The number of Kekulé structures for the whole
benzenoid is obtained as the sum of all numerals.

2. "Building-up" process. We may think of the benzenoid as built up
successively by adding the rows (upwards) in the sequence 1, 2, ...., m.

Each row is built (from the left) in the sequence 1, 2, ...., r .

The numerals, when added up in the appropriate sequence, give infor-
mation on the X number for every benzenoid during the building-up process.

Figure 3 shows two examples on the way, viz. L(5; 2) and L(5; 4; 1).
Notice that also each benzencid during the building-up process belongs to

the class C,
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Fig. 3. The benzenoids L(5; 2) and L{5; 43 1) with
their respective X numbers.
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K=9

Fig. 4. Example of a sub-benzenoid with reference to Fig. 2.

3, "Sub-benzenoids". Delete the row and column belonging to a given
hexagon of the benzenoid. The fragment below and to the right of the dele-
ted chains may suitably be referred to as the sub-benzenoid of that parti-

cular hexagon.

The numeral in each hexagon gives the number of Kekulé structures of
its sub-benzenoid.

Figure 4 illustrates the sub-benzenoid of the hexagon in the third
row and second column of our example (Fig. 2). Notice that also all sub-

benzenoids belong to class C.

4. Summation along a row. Consider a "backward" summation of numerals
in a row, i.e. starting from the last (right-hand side) numeral and pro-

ceeding to the left.

The numeral of a hexagon in the Z-th row and j-th column is equal to
the backward sum in the (Z-1)-the row up to the numeral of the j-th column.

With reference to Fig. 2 we have, for instance: 30 = 2 + 5 + 9 + 14,
9 =2+ 3+ 4, etc.
5. Summation along a c¢olwmt. Consider a summation of numerals in a

column from the bottom (first row).

The numeral of a hexagon in the Z-th row and j-th column is equal to
the sum in the (j+1)-th column up to the numeral of the Z-th row.

With reference to Fig. 2: 30 =1 +4 +9 +16, 9 =1+ 3 + 5, It

should be noticed that this rule is not applicable to the last hexagon of
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each row, which may be referred to as the 'rim". The rim numerals of our

example (Fig. 2) are 1, 2, 2, 16.
6. Summation of two numerals. The numeral of a hexagon in the z-th
row and j-th column is equal to the sum of (a) the numeral in the (2-1)-th

row and the same column (J)} and (b) the numeral in the (j+1)-th column and
the same row (7).

In other words, we are here looking for the numerals just below

(skew-right) and just to the right of the hexagon in question. Feor instance

(see Fig. 2): 30 = 14 + 16, 9 = 4 + 5. Notice that this rule is not appli-
cable to the hexagons of the first row, and neither to those of the rim, as

defined in paragraph 5.

Practical procedure

The following rules seem to give the easiest way to deduce the nume-—
rals.

(i) Assign the numeral 1 to all hexagons in the first row and one
outside the benzenoid.

(ii) Start backwards on each row in the sequence Z = 2, 3, ....y M.
(a) Find the rim numeral according to summation along the preceding row;
cf. paragraph 4. As a consequence of this rule rim hexagons, as long as

they are aligned (Pi = ), appear with equal numerals. (b) Find the rest

r,
i-1
of the (off-rim) numerals of the row according to the sum of two numerals

(paragraph 6).

PARALLELOGRAM-SHAPED BENZENOIDS ARD THE PASCAL TRIANGLE

The properties from paragraphs 4, 5 and 6 of the preceding section
are recognized from the Pascal triangle. Indeed, the numerals inside the
familiar L(mxn) benzenoid form a part of the Pascal triangle, as is illus-
trated (for m = 3, n = 4) in Fig. 5. This feature may be compared with an

exposition by Gorden and Davison.

TRANSPOSE OF THE BENZENOID

A benzenoid of class C may be considered in two different ways, de—
pending of what is understood as rows and what as columns . The interchanging

of rows and columns ("transposing") in the benzenoid of Fig. 2 leads to
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Fig. 5. Analogy between a parallellogram-shaped benzenoid and a
part of Pascal's triangle. The triangle is completed by figures
in parentheses. The bottom-left part shows the numerals inside
the benzenoid in the form of binomial coefficients.

L(2x4; 2x3; 1), which is depicted in Figure 6. The benzenoid and its trans-—
pose are in fact identical. The algorithm must consequently give the same K
value when applied in the two alternatives, as is exemplified in Figs. 2
and 6.

SPECIAL CASES OF L(Pl; Pz; wseay Pm)
The class of L(mIXn; mZXk); k<n

In Fig. 7 four examples of this special class of benzenoids are depic-

ted. Let the number of Kekulé& structures be denoted by

K = K{L{mIXn; mzxk)} (3)

(k)

Fig. 6. The benzenoid L(2x4; 2x3; 1),
which is the transpose of L(5; 2x4; 2);
cf. Fig. 2. The # value is deduced.




Fig. 7. Examples

of L(mlxn; mZXk) benzenoids with m, = 2, m, = 3,n=5and kK = 1, 2, 3, 4.

2

For K = 0 the case reduces to the classical parallelogram-shaped benzenoids

ml""f’l
K(O) = (4)
m
1
For k = 1 it is found

ml‘*n-l ) [ my ] m1+n—1 )
I'e =K +m = | —+m, +1 H n>1 (5)
(1) 0) 2( m n 2 ( o =

Similarly for k = 2:

m2+l) m1+n-2
Koy =Koy + ; nz2 (6
e a

This type of recurrence formula holds in the general case:

m2+k-1 mlm_k
Ky = *en *\ 7, ; n >k M
m

1

withl’
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or explicitly in the form of a summation:
k . .
m2+g—1 ml+n-J
K = :E: ~ n >k (8)
) J m -
J=0 1

The class of L(kxm; (m=k)xk); m >k, n>k

This is an interesting class of benzenoids, which emerges as speciali-

zation of the preceding case. Put
m, =k (9
and introduce the notation
m,+m, =m (10)
Let the number of Kekulé structures be designated

K[k] = k{L(kom; (m-k)xk)} (11)

Figure 7 contains (upper-right part) an example of a benzenoid belonging to

this class, where m = k= 2.

On combining (9) and (10) with eqn. (7) one obtains

m-1 n
Ky = KiL(kxn; (m=k)x(k-1)}} + ( ¥ )(k) (12)

We wish to relate this value of K[k] to K[k—l]‘ Hence we take the transpose

of the benzenoid of the right-hand side of eqn. (12) and obtain

EiL(om; (mek)x(k=1))} = K{L((k=1)xm; (n-k+1)xk)}

n m=1
= K{L((k-1yxm; (n-k+1)x(k-1))] + ( )( ) (13)

k k-1

Here eqn. (7) has been employed once more. On transposing the benzenoid on

the right~hand side of eqn. (13) one realizes that
KiL((k=1)m; (nmk+1)x(k=D))} = £{L ((k=D)xn; ks D)xR=D)} = Kpp_qy (18)

The net result from eqns. (12)-(14) is
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m=1 m-1 n
iy = Fg-n * [( y ) * (k_l)](k)
m n
=K[k"1]+(k)(k) % k> (15)

The case of K = 0 is a trivial one:

K[O] =1 (16)

The simplest non-trivial case pertains to kK = 1. Equations (15) and (16)

5,6

give the well-known result

m #
K1y = Xrop * 1) ) =m ot 1 m>1l,n>1 17

For higher values of k¥ we attain at new formulas, for instance:

m n
X = +
s ()

= D1y +mor 1y m>2,n>2

(18)

Fig. 8. Examples of L(kx; (m-k)xk)
benzenoids with m = 4, n = 7 and
k=1, 2, 3: L(7; 3x1), L(2%x7; 2x2)
and L{3%x7; 3).
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in the general case the following summation formula holds.

Kiky = KZ C)(j) “

=0

Provided that » > m. the maximal possible value of Xk is m, and

mi1
L) = ( ) (0]
m
m+n n
RS
m m

1,

whereas

Eqn. (20) is again the case of L{mwm). Also eqn. (21) is consistent with
previous results.4 Figure 8 shows examples for ¥ = 1, 2 and 3 of the class
of benzenoids considered here. In particular, the case with k¥ = 3 exempli-
fies kK = m-1, which is relevant to eqn. (21).

‘The basic theory of the present treatment imposes the restrictions on
the numbers m and n as given in eqns. (17) and (18). Curiously enough these
equations appear to have a wider applicability. Both of them reproduce the
trivial result of K[l] = K[Z] =1 for m and/or n equal to zero. For m = 1
eqn. (18), as well as (17), gives K = n + 1, which applies to L(n); for #
=1 they give ¥ = m + 1, which applies to L{m). This feature is quite gene-
ral, since ( " ) =0 form < £, arnd ( ﬁ ) =0 for n < . Hence the restric-

T %

tions on m and n are unnecessary in eqn. (19).

"Triangular" bensenoids

As a last example consider the triangular benzenoids;

T, = Lin; n=1; 7=2; ....5 1), K{Tn} =K, (22)

For the number of Kekulé structures (Kn) we have arrived at the following

recurrence property.
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Fig. 9. The triangular benzenoid
T5 ShO5y 45 3% 28 1)

0

Ko = (O) = (23)
2

Ky (1)=2 (24)

m nd In-2-2¢
K, - -y & “k n> 2 25)
n -=0 n—i

i

n

The first term, ( ) , designates the number of Kekulé@ structures for the

n
"rhombic" L(n*n) benzencid, while the subsequent terms (for m > 2) repre-

sent a deduction when the "triangle" is formed. Figure 9 shows the example

of T5. In this case

o () nl2) -0 ) ()

= 252 - 56KO = lSKl = 4K2 = K3 (26)

When the appropriate numerals are filled in (cf. Fig. 9) the K. values for

L <n (K, ..., KA in the figure) are found in the rim hexagons. This fol-
lows from the rule about sub-benzenoid.

The present class of benzenoids should not be confused with the well-

known non-Kekuléan triangular benzenoids.7 The difference is emphasized in

Figure 10.
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h =14, K=132 &

Fig. 10. Kekuléan and aon-Kekuléan h=14,K=0
triangular benzenoids with equal
number of rings (/).

GENERALIZATION OF THE ALGORITHM
Extended class of benzenoids

The algorthm is applicable (with slight additions) to a wider classof
benzenoids. Assume a benzenoid of class C and a smaller one of the same
class and common origin deleted from it. Such restrictions are imposed cn
the lengths of rows and columns that the smaller benzenoid does not tres—
pass the boarders of the larger one. Figure 11 shows an example, where
L(3; 2) is deleted from the benzenoid of Fig. 2. It may conveniently be de-
signated L(5; 2x4; 2)~L(3; 2) or L(5-3; 4-2; 43 2).

Generalized algorithm

In Fig. 11 the numerals are filled in. They obey the same properties
as specified for the algorithm under the above paragraphs:

The number of Kekulé structures for the whole benzenoid, as well as
those during the building-up process, are obtained by adding the numerals.
A special feature is encountered here, inasmuch as the benzenoids may be

disconnected. Figure 12 explains this feature. The numbers of X are consis-

Fig. ll. The benzencid of Fig. 2 with
L(3; 2) deleted from it. Here also the
number of Kekulé structures (K) is the
sum of the given numerals.




eee Fig. 12. Three steps during the
m oe K=29 building=up process of the
benzenoid of Fig. 11.
o I: L(5-3; 4-2; 1)

II: L(5-3; 4-2; 2)
III: L{5-3; 4-2; 3)

tent with the classical resultsl for disconnected parts; I: 2:8 = 16 and
I1: 3-8 = 24. The result for III (Fig. 12) may be checked by means of the
well-known algorithm1 for cata-condensed benzenoids,

The concept of sub-benzenoids applies also in the generalized case.
The two hexagons with numeral 8 in Fig. 11, for instance, possess the same
sub-benzenoid: L(3-1; 2) with X = 8.

In the present case we have two types of rim hexagons: (a) the "row-
rim" (right-hand boarder) as before; on Fig. 11 with the numerals 1, 2, 2,

15, and (b) the "column-rim" (bottom boarder); on Fig. 11 with the numerals

1, 1, 3, 8, 8. (In the previous case, e.g. Fig. 2, the first row is a tri-
vial column-rim.) The rule about backward summation along a row applies for
all hexagons except those of the column-rim. The summation along a column
(from the bottom) works (as before) for all hexagons not on the row-rim.
There may occur hexagons belonging to both the row-rim and the column-rim.
Fig. 11 does not display such an example (except a trivial one), because
the small benzenoid (to be deleted) is not large enough. Two examples are
depicted in Fig. 13, The summation of two numerals is applicable for all
hexagons on neither of the rims.

The practical procedure to deduce the numerals in the general case

runs as follows. (a) Use the summation of two numerals whenever applicable.
(b) Use the summation along a row or a column when the hexagon in question
lies on one of the rims. (¢) For hexagons belonging to both rims the nume-

ral is found by means of the rule for sub-benzenoids.



Fig. 13. The
benzenoids

(1) L(5; 2x4; 2)~L(4; 2) and (II) L(5; 2x4; 2)NL(2x4). The encircled
numerals belong to hexagons on both the row-rim and the column-rim.

Trcnsposed benzenoid

The transpose of the benzenoid of Fig. 11 is shown in Fig. 14. It may
be designated L{(2x4; 2x3; 1)~L(2x2; 1) or L(2X(4-2); 3-1; 33 1). The nume-
rals are filled in and give, as expected, the same X value as in Fig. 11

>

since the two benzenoids actually are identical.

Fig. l4. The transpose of the
benzenocid in Fig. 11. The X
value is deduced.
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