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Abstract

Fermion and photon states are formally introduced in set-theoretical

framework and further connected by a homomorphism associating transposition

of electron/hole pairs with annihilation/creation of photons. Linear incidence
of these two sets is identified as a graph and graph-combinatorial formalism
is used in representing these interaction processes.

INTRODUCT I ON

Multiphoton spectroscopies may be roughly divided into two categories.
The names of those may differ; one, for example, may be considered as phase-
dependent, time-resolved scopy while the other would be phase-independent.
The difference is more substantial in the experimental techniques employed
in these two categories (Ref. 1). Conceptual difference may be visualized in
the representation using time resclved diagrammatic schemes (Ref. 2) where
evolution of individual states is well dissected. The measurable phenomena
then occur as direct products of those separately evolved states; in the
case of phase-dependent methods particular evolution histories essentially
influence the measurable effect. Within the phase-independent methods, though,
particular time segments are rather irrelevant, all (measured) states are
well matched and all representations are canonical. Typical experimentation
is perceptibly simpler. Yet this very area is far from being explored.
Remarkably, some intuitive and recognizable patterns are pervasive even in
the inherent complexity of multiphoton transitions (Ref. 3). Further

rationalization is certainly desirable. Here such an attempt is made.



METHOD

The objective of this paper is a common one - interaction of an atom
and a photon. More specifically it is an interaction of bound electrons in
an atomic-molecular potential and photons at optical frequencies. It is
therefore assumed that electrons may occupy a finite number of discrete
states and that photons may occupy discrete states in the Fock boson space
(Ref. k). Finitness of the set of atomic states is not a limitation of the
present approach nor is assumed nondegeneracy of certain states, these are
just small conveniences used in the presentation. The states existing in
an atomic system but unoccupied by electrons at certain initial time may
be assumed to be formally occupied by holes. The holes may not be considered
as physical particles - these are used here as an essential element in the
mathematical formulation of the systems and their interaction; the fact that
a state is occupied by a hole sets, within this formalism, the preexistence
of the state available to an electron. We therefore may talk about distinctly
pro-fermion holes. By analogy, the same formalism can be used for the states
'spanning' the photon space. The structure of the photon space is not

essential here and will not be pursued in more details.

Therefore at some primeval time there exists the set B of photons and
the set F of fermions. The occupancy of the B8 is formally being controlled by
the action of the boson creation and annihilation operators, @+, ﬁ_,
respectively, (Ref. 5 ). The set F is of primary concern here and consequently
will be more elaborated upon. We define F asan union of the set E of electrons
and the set H of holes, that is,

{Fl=(eEyy(H} ; where ei,hje {F} (1

We need this distinction as the basis for the model we will develop. At this



stage ( primeval time ) it is essential to understand that there is no
overlap of the sets E and H such that it may result from some structural

characteristics of these sets. In other words,

{E}N(H} = (0} (2)

The occupancy of the sets E, H, such that e; eE and hj cH, is being
formally controlled by the creation and annihilation operators. Here one
amendment has to be made. Beside the electron creation and annihilation
operators, nt and n-, respectively, we introduce and employ throughout
the hole creation and annihilation operators, i+ and Y s respectively.
Consequently, we can articulate the previous rationale (vide supra) so that
an action of the hole creation operator on the (true) vacuum element
produces a distinct discrete hole occupying an element of the finite set
of states generally available to an electron. This amendment is simple; it
is technically a pure replica of the common electron second quantization

formalism, yet it is essential for our formalism.

We can formally define these operators as maps mapping the elements of
the common progenitorial set V, v, eV, (Ref. 6 ), to the sets E and H.
Since there is nothing in the E, H beside fermions (or pro-fermions) one can
postulate that the operators nt , n~  are surjective. Due to the quantum
mechanical restrictions set upon fermions it is obvious that these operators
are as well injective (at least n* is ). The properties of the boson number
operators are different; it might be that these produce a surjective map,
however due to the general properties of the whole-number-spin particles
the operators are generally very noninjective. Consequently, both g* and

lye where n(b) is the number of

g~ should be weighted by the factor [n(b) 1~
photons in the particular photon state. There may exist relations within
either E or H or both; we are not concerned with the possibility of the
relations within B. It is customary to endow a set of the type E with
structure and leave H essentially structureless, It is said that H acquires

an induced structure. One of the common forms of relations within the set E is

the structure of the Slater orbitals which are, due to the fundamental nature of



the particles, given the determinantal representation for fermions,

N
wa Y2y gl e 5 & (3)
i, j=1 i

and permanental representation for bosons,

NI N
-1/2
ME 2 1) IoPyy mooby; (4)
i,j=1 i=1

with the usual meaning of the symbols.

Now the atom and photons are allowed to interact. A possible consequence
that the photon field induces changes in the atom. It happens that a certain
number of photons are absorbed and another certain number of electrons occupy
different states from those prior to the interaction. Thus an electron can
occupy the state previously occupied by a hole; consequently that same hole
can occupy the state previously occupied by an electron. In terms of the sets

E, H one formally defines a permutation map,

T: {F} —> {F} (5)

such that

[ij(eihj)7> (ejhi)’ t” eT (6)

The map T is obviously an automorphism on {F} and is composed of products

of the elements tU., T=1 B & It can as well be redefined in terms of
n
creation operators,
e e . joc 3 o+
T )(jl> My Xil’ (7)

It may be furthermore useful to articulate the map tl'j by endowing it with a



sense preference,

b e w L A

tij'(“l XJ)‘ = = ”j Xi‘ >

_ (8)
(o o+ syl ey

tij-(nj > > n? xj\ >

If we consider creation of the electron state in the H and a creation of
the hole state in the E as a single event then we are formally introducing
the Liouville space; consequently, the state ﬁ? ¥ > is the line state
(Ref. 7 ) and will be written as ﬁ? i}| >> . If this process has been
energetically contributing to the atom a photon of similar energy should
have been absorbed. In the singie interaction act the unperturbed energy is

approximately conserved {(Ref. 4b). There is therefore one photon less in the

B, that is,
2 1/2
B, Ib,> > (b ) "“|b,-1> (9)
or more generally,
n(bk)—l
-1/2,4 1
D ED b — N O R TR (10)
n=20

and analogously for a creation,

) V2E b — 1 (bm) 2 b s (an

Obviously, creation/annihilation of photons is essentially associated with
the transposition within pairs of hole/electron elements. This can be formally

stated by defining a map g such that,



. (+F =,
9-(tij) > By

g:(t7.) —> @ HE
i k

where g is obviously a homomorphism, (Ref. 8 ), defining a nonempty

intersection of sets B and F, that is,

(B} (F} # {0}
(13)
{8} (F} = {G}

The intersection set G(f,b) is constructed by a linear incidence of the
elements bk, bk £ B, and ordered pairs of the elements Fm, fm cF. The set G
is therefore a graph (Ref. 9 ). Its single element is depicted in Figure la

or, given explicitly the sense to the relation, in Figure Ib.

Figure la. Figure 1b.

T -

This single element has usually been referred to as the K2 graph (Ref. 10) or
as dimer (Ref. 11). For a more complete scenario we need more elements, as

in Figure 2.

Figure 2.



Representing all possible single interactions for such an array one gets

Figure 3. which is the well known K3 3 graph (Ref. 9 ).

Figure 3.

APPLICATION

One can easily go on using this elementary graph formalism in

representing various interaction schemes. To recapitulate the main steps,

(i) electronic quantum states in an atom are dissected into a set E

occupied by electrons and a set H occupied by (pro-fermion) holes,

(ii) electromagnetic field is quantized, divided into discrete

nonoverlapping cells (Ref. 4b) and given the occupation number

representation, thus creating the set B,

(iii) interaction of two systems, (i) and (ii), is represented as an
intersection of the sets E, H and B; an element of this interaction
is a graph composed of one vertex defined in the E, the other vertex

defined in the H and the incident edge defined in the B.



We may, in principle at least, imagine cascade-type processes with the

elements of interaction as given in Figures 4. and 5.

Figure 4. Figure 5.
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Algebraic representation of the first scheme, for example,

into following parts,
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To these parts correspond following graphs,
Figure 6.
(a) (b) (c)
o. = [ I
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can be dissected
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Analogous expressions - graphs can be easily constructed for the scheme

given in Figure 5.

It should be clear at this stage that, (i) representing elements il,
iz, ..., etc, with full circles and elements j1, j2, ..., etc, with empty
circles, (ii) writing these elements in certain order, and (iii) placing
different kinds of vertices either up or down , is by no means essential
to the model. These are just esthetical conventions employed in order to
present the model as simply as possible. The essential part of the method
is the combinatorial structure of the discrete elements entering into an
interaction and here represented by graphs. Thus, the totality of these
cascade-type processes on a given set E, e, B, 1= by 2y o« 0w o 25 IS
given by an expression for counting the number of polygons in the complete
graph K, (Ref. 9 ). To remind a reader, a complete graph is that where all
vertices are mutually connected. For example, in the case z = 6, the first

few terms are,

2= el w05 DD e G G| > s
! ! (15)
el b T e e (R PRSI  higher veres
ii2n g 00 - Tl i v Rt |

It should be noted that, from the combinatorial point of view, the size of
the set H is unimportant. Summation over indices can be factored out as the
weight on a particular vertex of the graph. In a mixed representation the
previous expression looks like (16), where weights on particular vertices

are represented by (self) loops,



- ARERN T ot (nt oot
z tij(nixj)[ 5> 4 t“jtizj(n” (nmxj))[ >>

+ + % "
Q &
o . ﬁf ty jtiz iy (i (B GEXEN)] >
O + higher terms (16)

where subscripts Kl’ K

2> €tc, mean that one enumerates K.I polygons, K2

polygons, ete, or, vertices, edges, etc, respectively, in a particular graph.

We can as well construct schemes which appear to be mirror images of

those given in Figures 4. and 5.

+



Figure 7. Figure 8.

Algebraic expression corresponding to the scheme given in Figure 7. is,
ipt oF ot paiag at st Yot = ot )
Teih &Y 85 1 > tiJ'(“il’(J'l)’(jz1 R Xju‘rj(“nsz” e ek

and analogously for the other scheme. The processes depicted in Figures 7.
and 8. may be identified as the two-photon absorption and the three-photon

absorption, respectively.

We can express the character of the intersection of the sets B and F

by postulating the following proposition:

Proposition: The linear incidence of boson states with fermion line states

is a bipartite graph.

To remind a reader, bipartite graph is composed of twe sets of vertices
with restriction that only vertices from different sets are connected. The
proposition is therefore obvious for the schemes represented by the
bicolored graphs like K3’3 in Figure 3. or by any graph of the type Kn,m'
It is perhaps not so obvious for the schemes represented by graphs given
in Figures 4,5 and 7,8, for example. One should understand that those are
but condensed representation of the interaction schemes as depicted in
Figure 6. Formal description would invoke the notion of the split-vertex

graph (Ref. 12). Hence the proposition.



It is useful at this stage to introduce the concept of the adjacency matrix
of a graph (Ref. 9 ). In case of our interaction graphs it would have the

general structure,

Yt Y2 b3
a1 ;2 :
_ a7
A= L : .

where tab are transposition operators. Adjacency matrices have one property
useful for our consideration - they clearly depict all single and multiple
incidences in a graph. Furthermore if a particular interaction is given a

representation of a directed graph the adjacency matrix preserves the sense

of interaction to all orders.

An example will illustrate this model: within the set of SCF MO's of the
benzene molecule, for example, we single out the degeneratepair of I HOMO's
and the subset of unoccupied 1 MO's (UMO's) and give these graph

representation Ga in Figure 9.
Figure 9. With & little formulism
40

03 write the following relations:

50 from the standard graph

{umo? theory (Ref. 9 ) one can

G, = 6(2 K)) @ G(3 k) (18)

(Howo } A(G,) = A(B(2K))) + A(G(3K)))  (19)

1e *2



Here KI, as usual, stands for vertices or, more correct, nonconnected
vertices. Adjacency matrices of graphs composed of such vertices, @(n KI)’
are trivially nilpotent to all orders. In the next step of our example we

construct all possible single-type interactions,

T ot..:at ;(J.f| >> = ] B |b.> (20)

and get the scheme represented by the graph Gb in Figure 10.

Figure 10. Using the same standard
‘4 formulism one can derive

following relations by

inspecting the graph Gb;
6 = 6(2K;) B G(3K)) (21)

A(G) = A(6(2K))) ® A(G(3K,)) (22)

The adjacency matrix of the interacting system has the hypermatrix construction,

common to the adjacency matrices of

bicolored graphs. The diagonal AllT) 4012)
entries A(11), A(22), with obvious Alg) = (23)
meaning of the labels 11 and 22 J(21) Q(zz)

are in this particular case the

Q(ZKI) and Q(3KI)’ respectively,

and are thereforenilpotent. The 'contact' matrices iij‘ 4ji with the
+
property defined in complex field as J.. = J'.. obviously represent all

Nij o A
incidence relations between the two, differently 'colored' sets of vertices,

and for our example are given by the rectangular scheme,



|h.|> |h2> ]h3>
' 1 2 BE

$(2K|,3K]) = (24)
ley> t 22 23

Now, if we write the adjacency matrix for the system composed of two elements
from the set E, three elements of the set H and all incidences between these

two subsets we clearly get the following array,

R Ey Hh
0 0ty by by
AlG) = ty; tgy O 0 0 (25)
By gy O 0 0
tg; tg, O 0 0

It is easy to visualize this scheme as a composition of two 'main set' matrices
and two contact matrices. The diagonal matrices are composed by the operation
of direct sum @ while contact matrices can be imagined as composed by some
analogous operation of 'off-diagonal' sum. There is no operator for such an
operation but for descriptive purposes of this text and with the obvious

meaning we use the symbol ' @ ', We can consequently decompose the ﬁ(ﬁb) as,

AG, @G = B A + 48 (26)

We shal next exploit the well known property that higher orders of the

adjacency matrix of a graph, A" , contain informaticn on the number of

L1
trails {(Ref. 9) of the length n and starting at each vertex. The n-trail,

n>1, may be visualized either as n-sequence ©f consecutive single edges



between two vertices (not necessarily different) or as a bundle of m
edges, m <n, between the same pair of vertices. The number of n-trails in
the n-th power of the adjacency matrix of a graph is generally somewhat
tricky subject due to the property of repetitivness of trails but this
difficulty does not affect specific graphs we are considering. The

multiply connected vertices are given in Figure 11,

Fiaure 11.

& e
n=2 n=3

n

The automorphic map (t';'. of the line state ﬁ‘:’ )}j’| >> represented

in these two graphs is induced by multiple changes of the occupancy number

in the boson state and are given the following formulism,
- R B _ I/2 1/2

n=2 <by b1|B] By [b, by> = (b)) bi)

n=3  <blbib!|BBEe bbb > = (b)) 2 (b)) 2 (b)Y

k™1"m

or, in case of a single-frequency three-photon interaction,

wpl BD72ED 1o = 620222

This last event occurs in so-called three-photon homochromatic absorption

(Ref. 13). The scheme given by (27) corresponds to two-photon heterochromatic

absorption (Ref. 14). Enumerating trails of length one, two, etc. on an
interaction graph is extremely simple primarily due to the fact that these

are nonrepetitive trails and therefore - paths. The adjacency matrix (25)

(27)

(28)

(29)



contains all the informations on paths of length one. Square of the adjacency
matrix should give similar information on paths of length two. Square of the
Q(Gb) however, will not produce much of the information we are looking for.
There are simply no multiple interactions in it. Adding

result in a better model.

Figure 13 a. Figure 13 b.

We thus get a slightly more complex interaction graph GC with describing

relations,
G, = 2K, 8 Kg (30)
and
- (31)
AG) = AGK)) @ A(Ky) + A(2K),K,) 8 AlKs,2K))
where,
0 0 i ij ij
¢ 9 iJ ij ij
= A T 3 e 2
Q(Gc) ST 0 TR (32)
(7 o G 0 t
i) ij 1J 3]
it t2 t. 0



52 and 53 are rather complex structures with apparently little information

of use. Thus, for instance,

[ I e Y e ) S
1Jag iJ i

Jon t')tJJ t‘JtJJ

Tl tr)

ijij

TJ.) . g (33)

| Cv e i o . g q _
B N A i )

while, for example, the an element of the 4\3 is composed as,

(3) _ .

ay = ti‘jtjjtij + tijtjjtij + . . . etc, (eight such terms) (34)

As was stressed earlier these matrices do faithfully represent all the
interaction, however, if we evaluate only the specific type of interaction

we are concerned with, the complexity of higher order matrices, ,‘l-:\n, n>1 is

reduced. If we evaluate two-photon and three-photon interactions given by (27)
and (28) we get for the ’62((;),

0 0 2B a0 Qbevbae ZReats
3] i1°3] 1j ]
0 2t. .t.. A . v A A
ij]j 1373) 117]]
2
Ale) = 0 0 0 0 0 (35)
0 0 0 0 0



and for the QE(G),

0 0 2,

: PR o 2% sbio s etc.
L% J 15T 1) 1y Ji
0 0 Ztijtjjtjj etc. etc.
QB(GC) 0 etc. etc. : : (36)
0

with obvious information on the number of specific interactions. For simple

systems all these data can be arrived at by inspecting the interaction graphs.

We could, for a moment, step back and recollect how the interaction graph
was defined - as an incidence of boson states with fermion line states.
Formally, therefore, such a graph is created as an intersection of two boson
sets. A pair of adjacent vertices in that graph forms a boson particle ,

(Ref. 15). Totality of such pairs is the totality of bosons in the interacting
system. Since each such pair exists essentially in the process of a
transposition of vertices, evaluating elements in the adjacency matrix of

a graph we actually enumerate the number of permutations. One may therefore
consider these graphs as purely permutational objects and apply the standard
formulism of the symmetric group (Ref. 16 ). Thus, for example, our system

is a 5-center one, however, due to the bipartiteness of the interaction graph
the order of the group S(G) is reduced and can be more appropriately described
as,

s(6) = s(k) Us(h) (371
which can be understood in such a way that, in case of undirected edges,
the symmetry number of the system is 48 rather than 120. One may therefore

describe the graphs Ga and Gb by relations,

6, [ste)] = "1 u 1™ (38)



and
Gy : [s(6,)]1 = (2,171 y (2,17 (39)

For the Gc interaction equivalent to that given in (27) can be embedded into
following sets,

(s(6 )] = [3,11 U (3,1] (ko)
while those interactions given by (28) and (29) may be described as,
(s(60) = 41 u ' )

The obviousness of these expression fades away quickly with an increase in the
size of the system under consideration and combinatorial relations derived
either on the adjacency matrix or taken from the formulism of the symmetric

group become indispensable.

One should not neglect a probabilistic aspect in all these. For example,
an evaluation of single or double interactions requires covering of the
representative bipartite graph by a single dimer or by a pair of disjoint
dimers, respectively (Ref. 11). Singular probabilities in the latter case

are given by,
v, = plE, o )xplt, . 2
Pi = Pl IiJj) pl Jij) (42
while the total probability in the process of covering the graph with a
pair of disjoint dimers is,

Pt} & g w o ARPLE. 43
{t;) .ka(t,”J)p(tJj ) (43)

1 H Jk
Iy
where the operation which connects the composition of separate probabilities
is simple multiplication. Using this procedure one can straightforwardly

compute, for instance, combinatorial entropy of the two-photon interaction,



(Ref. 17). It is clear that the expressions (42) and (43) imply nonmetric
evaluation of the interaction graph. It is also known that interaction
processes are inherently quite complex. Thus, for example, to answer the
question whether the entries in the matrix QZ(GC) given by (35) correspond
to a single two-photon interaction or to two consecutive (however short the
intermediate time be) one-photon processes one ought to consider
probabilities of different types than those given in (42) and (43).
Measuring the final state arrived at through some intermediate state
necessarily includes amplitudes of those intermediate states and the overall

probability for such interaction would rather be,

Tk ; P(tiijj)P(tjjjk)D(tiijj.)P(tjjljk) (42)
J

i

Plt;) = p(tiijj)p(t )+ ]
J J

or, in the density operator formulism, exploiting the commutativity
property of projectors and idempotency of density operator, 1l and p ,

respectively, the previous expression would read,

Ple,,) = Tr(pnii "Jk o+ j? Tr{pﬂjj “jj. ij} (43)
Evaluation of a given combinatorial expression within a certain metric would
require endowing the codomain of the sets E and H with a proper algebraic
structure. A logical candidate for that would be the structure of the point
group of the molecule. In the next step one may exploit the structure of the
complete permutation inversion group (Ref. 18) or the point group can be
mediated by appropriate perturbative procedures. It may appear that the
presented discrete formalism will be lost in these considerations. Not so if
we recollect the linear, dissected structure underlying most of our approaches;
the problem though is how to define our interacting elements. This, however,

will be the topic of a separate communication.



CONCLUSION

Using elementary set theory bound fermion states and discretized photon
states were formally defined. Fermion states were further divided into
electron and hole states. By exploiting this elementary formalism
transposition of electrons and holes was formally associated with creation
and annihilation of photons., Thus a set created as an intersection of two
boson sets was defined and shown to posses properties of a graph.
Consequently, graph formalism and formulism were exploited to describe
simple, elementary interactions. Combinatorial character of these interactions
was derived in terms of the adjacency matrix formalism. Some elements of the
symmetric group formulism were also indicated. The elementary, nonmetric
character of these schemes was stressed in mentioning probabilistic aspect
of these interactions, It is hoped that this, rather elementary formalism,
can be used as a basis for elaborating on interaction processes within
specific metric structures. It is also hoped that thus dissected interaction
structure may be helpful in constructing an algorithm for a general mechanical

evaluation (Ref. 19) of interaction processes.
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