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Abstract - The number of Kekulé structures (K) of oblate rectangular
benzenoids (with indentation outwards) are studied. Rj(m,n) is used to
denote the oblate rectangle with 2m-1 tier chains of alternating lengths

n and n+l (in terms of the number of hexagons). The previous results are
extended by algebraic combinatorial formulas for the K numbers of Rj(m,3)
and Rj(4,n). In order to reach the latter goal the enumeration problem for
9 additional benzenoid classes had to be solved. New variants of the enume—
ration techniques are employed and seem to deserve the status of new

met@ods. A fully computerized method was also developed; it leads to an
equivalent algebraic formula for X{Rj(4,n)}.

1. INTRODUCTION

The enumeration of Kekulé structures of benzenoid systems has attrac-
ted many investigators. Peri-condensed benzenoids in the shapes of a paral-
lelogram, hexagon, zig-zag chain or a rectangle are very regular and recog-
nized as important classes [1, 2]. Combinatorial algebraic formulas have
been produced for the general case of a parallelogram in the classical work
of Gordon and Davison [1], who also reported the formulas for hexagons with
at least four sides equal. The general case of hexagons was solved more
recently by Cyvin [3]. The zig-zag chains were studied most extensively by
Gutman and Cyvin [4]. They reported combinatorial formulas for n-tuple zig-
zag chains with m up to 8, each expression being a polynomial of m-th
degree in n. The enumeration of Kekul& structures of rectangle-shaped

benzenoids is the topic of the present work.

2. DEFINITIONS

A rectangle-shaped benzenoid or simply rectangle has both "vertical”

sides indented. It is important to distinguish between prolate and oblate
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Ri (m,n) Rj 0n,m)

2m-1

n n
m=3 ’
e K =125 K = 2331
Fig. 1. Definition of the prolate (Ri) and oblate (Rj) rectangle.

rectangles [5], with inwards and outwards indentation, respectively; they
are denoted Ri (inwards) and Rj (outwards). The system of indices (cf. Fig.
1) is adopted from Yen [2].

This researcher [2] was also the first one to give the general for-
mula of the number of Kekulé@ structures (X) of a prolate reclangle, viz.

(n+l)m. In the following only the oblate rectangles are treated.
3. SUMMARY OF RESULTS
3.1. Oblate rectangles with fized values of n

Gutman [6] produced the combinatorial formulas for K numbers of
Rj(m,1) and Rj(m,2); see CHART I. In the present work the analysis was
extended to Rj{(m,3). These formulas were derived from recurrence relations.
Such a relation is also given here for Rj(m,4). The recurrence formulas

were used to compute some of the numerical values in TABLE 1.

3.2. Oblate rectangles with fized values of m

The combinatorial formulas of K for the 3-tier (m=2) [1] and 5-tier
(m=3) [1, 2, 7] oblate rectangles are long known; cf. CHART II. The chart

includes the present result for m=4, the corresponding 7-tier strip.

3.3. Numerical results

TABLE 1 shows the numerical values of X numbers for some oblate
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rectangles with n < 10 and m < 10. They were determined by means of the
appropriate algebraic formulas along with some supplementary numerical com—
putations (see below). Some of the values were checked directly by means of

a general computer-program for X numbers.

4, AUXILIARY BENZENOID CLASSES

The utility of auxiliary benzenoid classes was demonstrated by
Gutman [6] and later by Gutman and Cyvin [4]. Such classes also play an
important role in the present work. In Fig. 2 four auxiliary classes are
depicted. Only for the simplest one the explicit algebraic formula of the

¥ numbers is known [5], viz.

K{(B(n,2, -1)} = (”;2)(1»«1) - (n+2)(1;1) 1)

CHART I - Three oblate rectangular benzenoids
(fixed n)

Rj(m,1)

m>1
®(Rj(m,1)} = 2.
BRj(m,2)} = li + (a-\/ﬁ)’””]

K{Rj(m,3)}
- 2 5 m=-1 HaliS: m-1
~\/—gz(\/§+2)[§(3+\/§)] ¢ V3-2)[30-v5) %

a

I. Gutman, Match 17, 3 (1985).
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TABLE 1. Numerical values of K{Rj(m,n)}.*

L3
b 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 20 50 105 196 336 540 825 1210 1716
3 18 136 650 2331 6860 17472 39852 83325 162382 298584
4 54 928 8500 52137 242158 916992 2969946 8501625
5 162 6336 111250 1167291 8557164
6 | 486 43264 1456250
7 1458 295424 *Values greater than
7
8 4374 2017280 107 are not entered
9 13122
10 | 39366
CHART II - Three oblate rectangular benzenoids (fixed m)
Rj(2,m) Rj(3,n) Rj(4,n)
N———
n
aK{Rj (2,n)} \.—-T——/
1 2
= 13(n+1) (n+2) " (n+3)
N —
a-c . n
KIRG(3,m) = —=(n+1) (n42) > (n+3) (0% + 4n + 5)

120

k{Rj(4,m} = 5()%—50(n+1)(n+2)£'(n+3)(1?n£’ + 136n° + 439n° + 668n + 420) "

%M. Gordon and W.H.T. Davison, J. Chem. Phys. 20, 428 (1952).
b,
T.F. Yen, Theoret. Chim. Acta 20, 399 (1971).

N. Ohkami and H. Hosoya, Theoret. Chim. Acta 6k, 153 (1983).



Fig. 2. Four auxiliary benzenoid classes.

5. OBLATE RECTANGLES WITH FIXED VALUES OF n
5.1. The case of n=3

Gutman's method [6] was applied to the case of Rj(m,3). In this case
we need the benzenoid classes B(3, 2m-2, L), where I = -1, 0, 1 and 2. The
definition for the negative value of I should be clear from Fig. 2, where
the second index in B may be extended to 6, 8, 10, .... in an cbvious way.
The definition for positive values of I is explained in Fig. 3, which also
includes I=0; the latter case ccincides with the definiticn for ¢ < 0. In
this notation B(3, 2m-2, 3) = Rj(m,3). Introduce also the symbol Kl(m') to
identify the number of Kekulé structures for B(3, 2m', l), where m' = m-1.
The following equations (for m' > 1) were found, all in terms of K3(m')

and K30n'-1), which are K numbers for oblate rectangles.

Ky(n') = Ky(n') - % Koy(n'-1)

K (') = £ K (n")
Ky(n') = 3 K (m'-1)

vy =Ly oo 5 1
K_l(lﬂ ) ol 7'{3(” ) s “2‘ KB(M —1)
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Furthermore it was arrived at the recurrence formula
KB(m') = 5[3}(30:'1‘-—1) - 5}(3(m'—2)]; m' 22
This relation is equivalent to
K{Rj(m,3)} = 15k{Rj(m-1, 3)} - 25K{Rj(m-2, 3)}; m> 3 (2)

Along with the initial conditions K{Rj(1,3)} = & (anthracene) and
¥{Rj(2,3)} = 50 (ovalene) it determines all K numbers for Rj(m,3) with
arbitrary m values. The derived explicit formula is shown in CHART I.
5.2. The case of n=4
A recurrence formula was also derived for Rj(m,4). In this case let
k’l(m') denote the X numbers for B(4, 2n', L), where 1 = -2, -1, 0, 1, 2, 3
and 4; m' = m-1. Consequently Kd(m') = K{Rj(n,4)}. In this case it was
found (m' > 2):
1 = Al - L
Ka(m ) Ka(m ) 3K4(m 1)
' L3 1 — P [
Ky(n') = K (m') - 9K (n'=1) + 18K, (m'~2)

Kl(m') = gKa(m'—l) = 18K!'(m'-2)

Ko(m') = 3K4(m'—1)
K_l(m') = 6K, (m"-1) - 18K4(m'—2)
K_Z(m') = K,‘(m') - 18K4(m'—1) + 361(4(:11‘-2)

>0 5w, 202, 1)

Fig. 3. Definition of more auxiliary benzenoid classes (cf. also Fig. 2).
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Finally it was arrived at the recurrence formula
Ka(m') = 27[K4(m'—1) - éKa(m'—Z) + &Ka(m'—3)]; m' > 3
which is equivalent to:

K{Rj(m,4)} = 27K{Rj(m-1, 4)} - 108K{Rj(m-2, 4)}

+ 108K{Rj(m=3, 4)}; m> 4 (3)

In order to determine the K numbers for arbitrary values of m we also need
the initial conditions K{Rj(m,4)} = 5, 105 and 2331 for m = 1, 2 and 3,

respectively.

6. BASIC FORMULAS

We now turn to the enumeration of Kekulé structures for the 7-tier
oblate rectangles, Rj(4,n) with arbitrary values of #; cf. CHART II. None
of the previcusly applied methods for the corresponding 5-tier strip [1, 2,
7] seem to be amenable for a generalization to higher rectangles. The pre-
sent result of ¥{Rj(4,7)} (cf. CHART II) was achieved by refined applica-
tions of the auxiliary benzenoid classes shown in Fig. 2. New variants of
the enumeration techniques had to be employed, and a number of benzenoid
classes of 5-tier, 6-tier and 7-tier strips had to be solved before the
goal was reached.

A basic formula, viz.

n
KRjGm) = > KB4, =)} K(B0,2, -D)) (%)
=0
is obtained by means of the well-known [8] enumeration techniques of frag-
mentation, which is supposed to be applied n times; cf. Fig. 4. The thick
arrows point out the bonds which are attacked each time. In this precess
one arrives at a series of essentially disconnected benzenoids, for which
the total X number is equal to the product of XK numbers of the two parts.
The type of formula (4) is quite general for ghblate rectangles. One

has actually
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Rj(4,n)

B(n,2,0)-8(n,4,0)

|

G g g

B(n,2,-1)B(n,4,-1)

B(n,2,1-n) -B(n,4,1-n)

e

B(n,2,-n)-B(n,4,-n)

Fig. 4. The method of
fragmentation applied
to Rj(4,n).
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n
KRI(mm) = ) K(BGr, 22, -0))
=0
n
= Zm(n, 2, )} -K{(BGn, 27, -5)} )
=0
where p and g (positive integers) fulfil the condition p+q = m-1. Thus, for
instance, for the 9-tier oblate rectangle:
n n
K{Ri(5,m)} = Z E{B(n,8, 1)} =ZK[B(n,6, -¢)}k{B(n,2, -i)}
=0 =0

n
= Z[K{B(n,a, —1‘)}12 (6)
=0

The numbers K{B(»,4, -1)} were computed numerically for some values of 7
and 7. TABLE 2 shows, as an example, the results for #n=5. Also included are
the corresponding numerical values for X{B(n,2, -1)}, which conform with
eqn. (1). With reference to the notation in TABLE 2 one obtains (cf.

TABLE 1) :

TABLE 2. Numerical values of

A £ y
@y = {B(5,2, -1)} and ¥y =
K{B(S5,4, -1}, ¢ g; o
2 42 1519
3 42 1519
4 35 1225
5 21 686
o
K{R(2,5)} = Xm, = 19
i=0
5 5 g
K{R(3,5)) = Xy, = Jx = 6860
i=0 £=0
5
K{R(4,5)} = Yxy, = 242158
7=0
3, 2
K{R(5,5)} = 3 y,° = 8557164

©
]
<

Now we turn back to the algebraic solution of eqn. (4). The idea is
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to achieve this goal without having an algebraic solution for the auxiliary
benzenoids B(1,4, -Z). On inserting the expression for B(n,2, -i) from eqn.

(1) into (4) one attains at

n n
K{Rj(4,m)} = (";3) ZK[B(n,a, -} (@) - (n42) ZK{B(n,&, —i)}(”“;z)

=0 =0
n n
- (%) Dxen, DY kw@) - e Y KB4, DY RLED) D
=0 =0

Here L(Z) and L(2,Z) are well-known benzenoids, viz. the linear single
chain and 2-tier parallelogram [1]. The two summations of eqn. (7) are

identified with the K numbers of certain benzenoid classes, viz.
kriamy = {752) KiH3,6m) - ) KIH,5,m) ®

The two types of benzenoids are depicted in Fig. 5. The indices (3,4,7) and
(3,5,n) are used because they refer to sub-benzenoids of the hexagon-shaped
classes [3] 0(3,4,n) and 0(3,5,7), respectively. The identity with the sum-
mations of eqn. (7) become apparent when the benzenoids are treated by the
method of fragmentation according to the same pattern as applied to
Rj(4,n); it is illustrated in Fig. 4. Figure 5 indicates by arrows marked
r the first bonds to be attacked in this procedure.

Before we start to enumerate the Kekulé& structures of the two ben-
zenoid classes of Fig. 5 we will solve some simpler problems, which will

prove to be useful in the following.

H(3,4,n) H(3,5,n)
s s
r r
\*—/
n
\—*/
n

Fig. 5. Two benzenoid classes.
See the text for the significance of the arrows.
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CHART III - Three 5-tier strips

0b{2,4,n) Di(2,4,1) MH(LZAZL
n n n

i 2 2 ;
k{ob(2,4,m)} = -56—5(n+1)(n+2) (n+3) (Tn” + 28n + 30}
KADL(2,6,0)) = rg(rrl) (1+2) 2 (143) (28) (3 + 5)
2.3 ! 2

KM (174 L)} = 5gln+1) (nr2) (ne3) (90" + 26m + 20)

7. THREE FIVE-TIER STRIPS
7.1. Introduction

CHART III shows three benzenoid classes of 5-tier strips, all of them
sub-benzencids of the hexagon 0(2,4,n). Here Mn(LzﬂzL) or MH(LLAAL) is a

multiple chain, where the parenthesized symbols refer to the LA-sequence[9].

7.2. The class 0b(2,4,n)

The benzenoid Ob{2,4,n) is actually a hexagon without two corners, to

which Cyvin's theory [3] is applicable. One obtains

k{ob(2,4,m)} = k{o(2,n,4)} - 2&{0(2, n-1, &)} + K{0(2, n-2, &)}

(X)X 5 (000)

This expression was worked out to yield the polynomial-form in CHART III.

=L

5

2

5

1

3 )

1.3. The n-tuple chain Mn(LZAZL)

The method of fragmentation [8] was applied to MH(LZAZL) according to
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M (LZAZL) L(2,n) -L(2,1)
n
n-1
m
ch(2,3, n-1)
(L A L)
Fig. 6. The method of fragmentation

applied to M L A L)

Fig. 6. Thereby it was achieved to arrive at Mn_l(LZAZL) as one of the

fragments. Hence one attains at a recurrence formula:
2.2 2,2 2
K{Mn(L ALY} —K{Mn_l(L A°D)} = [K(L(2,n)}]7 +K{ch(2,2, n-1)}; n>1 (10)

The required formulas of X numbers on the right-hand side of this equation
are known. In particular is the symbol Ch used to denote a chevron-shaped

benzenoid [10]. In total one obtains

2
2.2 , 2,2 ., _ (n+2 (n+2\ _ (n+2
ki a2} - ron_ afatny = () en (3) - (73F) (1n)
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With the initial condition K{MO(LzAZL)} =1 one attains at the summation

formula
n n n

o cn -3 (2 3 () -3 ()
=0 £=] =2

The summations were worked out to yield

s asor - (7(5) - (5)

or the polynomial-form quoted in CHART III.

7.4. The class Di(2,4,n)

(12)

(13)

The members of the class Di(2,4,n) may be referred to as prolate pen-

tagons; cf. CHART III. The method of fragmentation (cf. Fig. 7) gives the

recurrence formula

K{Di(2,4,m)) - K{Di(2,4, n-1)} = K{Mn(LzAzL)} = [””)(’”3) = (

) (14)

\ 2 3
Di(2,4,n) Mn(EzAzL)
n n
’ p /-*—-\
Di(2,4, n-1)

Fig. 7. The method of fragmentation
applied to Di(2,4,n).

N—m——

n-1
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where the expression from egn. (13) is inserted. This leads to the summa-

Finiiad ) i (i;z)(i;z) _ i (z;ﬁ) (15)

=0 z=1

tion formula

The summations were worked out to yield the result quoted in CHART III.

8. THREE SIX-TIER STRIPS
8.1. Baste formula

According to eqn. (8) we are primarily interested in M(3,4,n) among
the 6-tier strips; cf. Fig. 5. We will use the refined application of
auxiliary classes described in Section 6. When the method of fragmentation

is applied with respect to the bond marked s in Fig. 5 one realizes

n
K{H(3,4,m)} =Zx{3(n,3, ~2)}-K{B(n,2, —2)}
=0
n n
- (%37) D0 KiBn,3, -0} oK(LE)) - (n2) D K(B,3, D)KL, (16)
=0 =0
Here again the two summations on the right-hand side are identified with
the X numbers of certain benzenoids;

n+3

K{H(3,4,m)} =( > ) K{ob(2,4,m)} - (m+2)K{H(2,5,n)} (17)

The K formula of Ob(2,4,n) was found in Section 7.2. In order to solve this
problem for the benzenoids referred to as H(2,5,n) we have first attacked
the multiple chain of Mﬂ(L3AZL). Both these classes are sub-benzenoids of
0(2,5,1); cf. CHART IV.

8.2. The n-tuple chain Mn(L:’AZL)

The method applied in Section 7.3 (cf. also Fig. 6) may be genera-
lized straightforwardly to the case of Mn(LpﬁZL), where p is a positive in-
teger. The result is

P2 _ [n+2\(nip¥l) _ [n+p+2
vy Paton - (7)) - ()

2 p+l p+3 (18)

Equation (13) is the special case of p=2. With p=3 one attains at an
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CHART IV - Three 6-tier strips

H(3,4,1) H(2,5,n) MH(L:lAzL)
n n n

KIH(3,4,m)) = Zl—o(nﬂ)(mz)"(ms) (% + 4n + 5)
KUH(2,5,m)) = 510001) (n42) 20043) (4n + 3102 + 750 + 60)

ey 1 . .
K{Mn(“ A°L)} = 565{n+1)(n+2)(n+3)(nfa)(ynz + 20m + 15)

expression which is equivalent to the polynomial-=form in CHART IV.
8.3. The class H(2,5,n)

A benzenoid belonging to H(2,5,n) is depicted in CHART IV. The method
of fragmentation was applied in a similar way as in Sections 7.3 and 7.4,

but in three steps. Also in this case a recurrence formula was achieved:
#{M(2,5,m)1 - k{H(2,5, n-1)}
= K{Mn(LgAzL)} + KLOb(2,4, n-1)} + k{D(2,3, n-1)); =n> 1 19)

Here the desired X formula for Mn(LsAZL) was found in Section 8.2 (cf. also

CHART 1IV) and the one of 0b(2,4,n) in Section 7.2 (cf. also CHART III). The

remaining K number pertains to the 4-tier pentagon, for which the formula
is known [3]:

n+3
3

kp@,3,m) = fon® (M) (20)
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On inserting the appropriate formulas (two of them with »n substituted by

n~1) into eqn. (19) one attains at

K{H(2,5,n)} - K{H(2,5, n-1)} = 61—0 (“;3)(271 + 3 (% 4 21+ 200 (21)
This leads to the summation formula
"
1 i+3Y,. . .2 .
K{H(2,5,n)} = 5 ( - )(21 +3)(72° + 2172 + 20) (22)
{L=0

This sum was worked out into the expression of CHART IV.
8.4. The class H(3,4,n)

The desired X formulas to be inserted into eqn. (17) have now been de-
termined (cf. CHARTS III and IV). Consequently we arrive at the formula for
H(3,4,n). It is included in CHART IV.

9. THREE SEVEN-TIER STRIPS

9.1. Basic formula

We are primarily interested in H(3,5,n); cf. again eqn. (8). A parti-

tioning similar to eqn. (16) of Section 8.1 reads

n
KH(3,5m) = Y k{Clnt, —D)1k{B01,2, =)
=0
n n
. (";3) D KCt,a, “DIEL@DY = (2 Y KCE,4, -1} K(L(2,0} (23)
=0 =0

This result was again obtained by the method of fragmentation when focusing
the attention on the arrow marked s in Fig. 5. The two summations on the
right-hand side are identified with XK numbers of certain benzenoids accor-
ding to:

n+3

K{H(3,5,m)} = ( 2

) K{H(2,5,n)} - (m+2)k{H(2,6,n)} (24)

The K formula for H(2,5,n) was found in Section 8.3. The benzenoid H(2,6,n)
is depicted in CHART V and treated in a subsequent section. But first we
need to find the X formula for the multiple chain alsc shown in CHART V.

The two latter benzenoids are both sub-benzenoids of 0(2,6,n).
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CHART V - Three 7-tier strips

H(3,5,n) H(2,6,m) Mn(LBAZLZ)

Ly

KIH(3,5,m)) = gores(]) (42) 2 (ne3) (25n° + 2420 + 86307 + 1390n + 840)

KIH(2,6,m)) = soiestntl) (n42) 2 (n43) (044) (310> + 236n° + S45m + 420)

K{Mn(L3A2L2)} = Solm(nﬂ)(m2)(n+3)(n+4)(3m3 + 19972 + 3557 + 210)

9.2, The n-tuple chain Mn(LBAZLZ)

The problem of X numbers for Mn(LBAZLZ) was solved in a somewhat
different way from the other multiple chains of the present work (Sections
7.3 and 8.2). Figure 8 shows the scheme for a suitable application of the
fragmentation method. It resembles the one of Fig. 4, but differs signi-
ficantly in the types of auxiliary benzenoid classes. In the present case

it is obtained

n
kim 2a%h) = Z #{L2,2,2)} -K{L(3,2)} (25)
=0
vhere L(3,%Z) is the well-known 3-tier parallelogram, while L(#,2,Z) is the
2-tier parallelogram augmented with one row. This class has been treated

elsewhere [4], and it was found
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N

32
M (LALT)

—— PR S
— — L(n,2,n) -L(3,n)
|
—— L(n,2, n=-1)-L(3, n-1)
:

|
§ 5 i % L(%,2,1) -L(3,1)

\
% L(n,2,0)

Fig. 8. The method of fragmentation applied to Mn([,Bflsz).
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+3 +2-1
L(m,2,0)} = ("3 ) - (” q ) (26)
With the aid of this equation the right-hand side of (25) was rewritten
into
n n
ki @43 = Lm? s 12n ¢ 1) 2L G0 ? + Lim? + 10m + 1) 2Lt
b 18 : 12 ;
=0 1=0
n n n
sdonn? 5 ap- ) 2yt Loty 2oaay el ) aa® 27
A =0 = i0 % =0

The summations were worked out to yield the net result quoted in CHART V.

9.3, The class H(2,6,n)

The method to find ¥ for the H(2,6,n) class {(cf. CHART V) was the
same as used for H(2,5,n) of Section 8.3 (see also Sections 7.3 and 7.4).

The partitioning leads to the following recurrence formula.

K{H(2,6,n)} - K{H(2,6, n-1)}

& K{Mn(L3A252)} + K{H(2,5, n-1)} + k{Di(2,4, n-1)}; =n>1 (28)

All the required X formulas on the right-hand side are given above (see
CHARTS III-V). After inserting the appropriate expressions it was arrived

at
K{H(2,6,m)} - k{H(2,6, n-1)}
= @% (”;3)(% + )7 + 19107 + 3800 + 280); n > 1 (29)

In the next step it was found:
n
1 c
K(H(2,6,m)) = w5 X’ v bmea® 4 1085(1+1)°
=0

s 4 3
+ 1505(£+1) " + 1253(2+1)° + 602(2+1)2 + 120¢4+1)] {30)
which was reduced to the expression shown in CHART V.
9.4. The eclass H(3,5,n)

The approrpiate formulas from CHARTS IV and V were inserted into eqn.
(24), and the expression of CHART V for K{H(3,5,n)} emerged.
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10. SEVEN-TIER OBLATE RECTANGLE: FINAL FORMULA

As the final step we insert the expressions from CHART IV and CHART V
for K{H(3,4,n)} and K{H(3,5,n)}, respectively, into eqn. (8). The resulting
expression was reduced to a polynomial form; this step completes the alge-
braic computation of the X number for Rj(4,n). The final result is dis-
played in CHART II.

11. FULLY COMPUTERIZED METHOD
11.1. Introduction

Here we will outline an approach which leads to algebraic formulas
for K numbers of Rj(m,n) with fixed m, and is entirely based on numerical
analysis. The principles are generally applicable to classes of benzenoids
where £ is a polynomial in 2. The method is convenient for computer pro-
gramming. However, the below examples, although including Rj(4,n), are
simple enough to be solved without such facilities.

It should be emphasized that the computerized method does not make
the algebraic approach superfluous. The latter approach, which is treated
in the preceding sections, indicates methods of wide application, it gives
intermediate solutions which may be regarded as separate achievements, and
it shows inter-relations between different classes of benzenoids.

The first important point is to be able to predict theoretically the

degree of the polynomial

£y = ¥{Rj(m,n)} (31)

One has Pl(n) = n+l as a trivial case, while the polynomials for m = 2, 3
and 4 are found in CHART TI1. We observe that the degrees (say dm) of Fk(n)
are 1, 4, 7 and 10 for m = 1, 2, 3 and 4, respectively. It is reascnable

to guess

d =3m~2 (32)

in the general case (m > l); the degree increases by 3 units for every unit
of m. Equation (32) only as a working hypothesis is not enough for our pur-
pose. However, it is not difficult to prove rigorously eqn. (32) by means
of eqns. (1) and (5). It was done by choosing g=1 and conducting a thorough
book-keeping of the highest powers of n and Z. Strictly speaking we have
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proved @ﬂ < 3m - 2, which is sufficient for our purpose, and where the sign

of equality is highly probable.
11.2. Polynomial in powers of n

The approach is based on assuming a polynomial with indetermined

coefficients. Thus we have in an obvious way for Rj(2,n):

Pz(n) =a+ bn + cnz + dn3 + en4 (33)
The knowledge of five XK numbers is required in order to find the coeffici-
ents. Assume that the first ones are known, i.e. Pz(n) =1, 6, 20, 50 and
105 for » = 0, 1, 2, 3 and 4, respectively (cf. TABLE 1). In particular we
have taken advantage of PZ(O) =1, which is the trivial case of no rings
and consistent with the general formula (CHART II1). This gives us 5 linear
equations for the coefficients of (33). The solution is

23 I
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The resulting polynomial is equivalent to the expression in CHART II.
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11.3. Application of binomial coefficeints

As a variant of the above approach we may take advantage of expres-
sing the polynomial in terms of binomial coefficients. As an alternative

to eqn. (33) we may write

" n n n n
Pz(n) =A + B(l) + C(2> + D(B) + E(A) (34)

This form facilitates the elimination process during the solution of the 5
linear equations for the coefficients. The computation may be set up in the

shape of the Pascal triangle in the following way.

L = A 5 A =1
6 = A4+ B i B =5
20 = A+ 28 +¢C f ¢=9
50 = A4+ 3B + 3C +D H D=7
105 = A+ 4B + 6C + 4D + F ; E=2

The resulting formula is equivalent to the previous result (CHART II}.
11.4. Assumption of partial factorizaiion

The number of unknowns is reduced if we assume a partial factoriza-

tion of the polynomial. From the expressions of CHART II it is tempting to
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guess that (n+l), (n+2)m and (n+3) are factors in P%(n) for m > 2. Con-

sequently we define
Q,(m) = K{Rj(m,m) 1/ [ (n41) (n+2) " (n+3) 13 m> 2 (35)
where %n is a polynomial of degree 2m-4, and
B, () = (n+1) (42)"(n+3)Q, (m) 5 m>2 (36)

In this work Q4(n) was determined by means of 5 unknowns using the
binomial-coefficient version of the theory. Five numerical solutions had to
be assumed (cf. TABLE 1); §,(0) = 1/48, @, (1) = 54/648 = 1/12, @,(2) =
928/3840 = 29/120, Q4(3) = 8500/15000 = 17/30, Q4(4) = 52137/45360. The

following result was obtained.

Qm)=MMMmH

4 \
_ (n#1) (n+2) " (n43) n n 5
= ——-mo———[ﬁd (4) + 119 (3) + 161 (2) + 1057 + 35] 37

Equation (37) is equivalent to the correspending formula of CHART II. How-
ever, the general validity of eqn. (37) is not ascertained in the compute-
rized approach because of the unproved working hypothesis of eqn. (36). A
verification of eqn. (37) may be conducted in either of the two following
ways: (a) to prove the hypothesis (36) for m=4, or (b) test eqn. (37)
numerically for additional 6 values of n. A middle-way is also possible.
Equation (7) shows immediately that at least (n+2) is a factor in P4(n).
Hence it is sufficient to test additional 5 values of n. Equation (37)
gives actually the appropriate numerical values of TABLE 1 for n = 5, 6,
7, 8, Finally for n=9 the result of P4(9) = 22020064 was verified to coin-
cide with the XK number for Rj(4,9). This completes the derivation of

K{Rj(4,n)} according to the fully computerized method.
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