NODAL INCREMENTS APPROACH TO THE TOPOLOGICAL RESONANCE ENERGY OF BENZENOID HYDROCARBONS

J.Ciosłowski*

Department of Theoretical Chemistry , Jagiellonian University , Cracow , Karasia 3 , Poland

(Received: September 1985)

Abstract. The concept of the additive nodal increments is applied to analyse the topological resonance energy of benzenoid hydrocarbons.

Preliminaries

Let Q(x) be a polynomial of a degree N. We can then define the following functionals :

$$E[Q] = \sum_{i,i}^{N} |x_{i}| \tag{1}$$

$$\mu_{K}[Q] = \sum_{i/4}^{N} x_{i}^{K}$$
 (2)

where the summation runs over all the roots x; of Q. If we assume that all the x_i 's lay in the interval $\langle -a,a \rangle$, then we can approximate E[Q] by means of the normalized Legendre polynomials :

$$E[Q] = a \sum_{i|I}^{N} \sum_{i|I}^{\infty} c_1 P_1(x_i/a)$$
(3)

^{*}Present address : Department of Chemistry , Georgetown University , Washington , D.C. 20057 , USA

where :
$$c_1 = \int_{-1}^{+1} |x| P_1(x) dx$$
 (4)

A truncation of the expansion (3) on the J-th term leads to an approximate formula for E[Q]:

$$E[Q] \approx a \sum_{i|1}^{N} \sum_{i|0}^{J} c_{1}P_{1}(x_{i}/a) = \sum_{i|0}^{J} b_{1,J}\mu_{1}[Q]$$
 (5)

where b_{1.J} are appropriate coefficients.

Provided all bonding MOs are doubly occupied and all antibonding MOs are empty , the total pi-electron energy of a particular conjugated system is given by 1 :

$$\mathbf{E}_{\mathsf{pi}} = \mathbf{E}[\boldsymbol{\phi}] \tag{6}$$

while the topological resonance energy (TRE) 2 is given by :

$$TRE=E_{pi}-E_{pi}(ref)=E[\phi]-E[\alpha]$$
 (7)

In these formulae ϕ and α denote the characteristic and the matching polynomial³ corresponding to the considered molecule, respectively.

In the case of the benzenoid hydrocarbons there is a 1:1 correspondence between the molecular graph and the dualist obtained by the replacement of the ring centers by dots (Fig.1):

Fig.1

The dualist can be then decomposed into so called nodes^{4,5} which describe the local annellations of the rings (Fig.2).

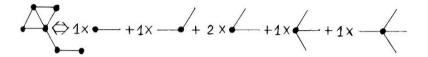
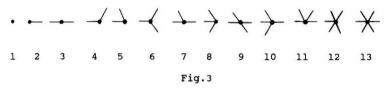


Fig. 2

There are only 13 different kinds of the nodes (Fig. 3) :



Let \underline{n} be a vector having the components (n_1,\ldots,n_{13}) , where n_i is the number of the nodes of type i. For example, the vector \underline{n} corresponding to the hydrocarbon from Fig.1 has a form (0,1,0,1,2,0,0,1,0,1,0,0,0). It should be pointed out , that there are different molecules having the same n. These molecules we call isonodal⁴.

The nodally and globally dependent properties

All the properties of benzenoid hydrocarbons can be divided into two general classes. Let P be a particular property. If there is a function p for which the relation:

$$P \approx p(\underline{n}) \tag{8}$$

holds with a significant accuracy , then P is called nodally dependent. Otherwise , P is called globally dependent. It should be mentioned that this classification is to some extent arbitrary , depending on the required accuracy of eq.8. For example , it has been found that the total pi-electron energy Epi is nodally dependent with the accuracy of about 0.2% , whereas the spectral radius of the adjacency matrix (R) :

$$R = \sup_{i} x_{i}$$
 (9)

with the accuracy of about 1%6.

The simplest form of eq.8 is encountered when we can write:

$$Pzg.\underline{n} \tag{10}$$

If so , then P can be calculated by means of the additive nodal increments represented by the vector $g=(g_1,\ldots,g_{13})$.

The additive nodal increments for TRE

Taking into account equations (5) , (6) and (7) we can write (a=3) :

$$\mathbf{E}_{\mathbf{p}\mathbf{i}} \approx \sum_{l|\mathbf{0}|} \mathbf{b}_{\mathbf{1},\mathbf{J}} \mu_{\mathbf{1}}[\underline{\Phi}] \tag{11}$$

TRE
$$\approx \sum_{i|0}^{J} b_{1,J}(\mu_{1}[\Phi] - \mu_{1}[\alpha]) = \sum_{i|0}^{J} b_{1,J}\Delta\mu_{1}$$
 (12)

It has been shown that the expansion (11) truncated on the 8th term reproduces Epi up to 98-99%. On the other hand , the moments μ_0 , μ_2 , μ_4 , μ_6 and the main part of μ_8 have

been found to be nodally additive. And so , since $\mu_1 = \mu_3 = \mu_5 = \ldots = 0$ for benzenoid hydrocarbons , E_{pi} can be calculated by means of the additive nodal increments (ANI) with a relatively good accuracy.

The situation with TRE is quite different. Firstly , we have:

$$\Delta\mu_0 = \Delta\mu_2 = \Delta\mu_4 = 0 \tag{13}$$

Secondly , the expansion (12) , truncated even on the 10th term , greatly overestimates the TRE. Thus , although the computer simulated ring annellations show that $\Delta\mu_6$, $\Delta\mu_8$ and $\Delta\mu_{10}$ are nodally additive (Table 1) :

$$\Delta \mu_{1} = g_{1} \cdot \underline{n}$$
 (1=6,8,10) (14)

the equations (12) and (14) cannot provide the values for $g_{\mbox{\scriptsize TRE}}$:

$$TRE \approx \underline{q}_{TRE} \cdot \underline{n} \tag{15}$$

The only way to determine g_{TRE} is to set together the exact and the calculated (by virtue of eq.15) values of TRE. Such a correlation has been carried out for the trial set of 141 benzenoid hydrocarbons taken from ref.7. The quality of the least-squares fit is described by the standard deviation of 4%. The highest relative error was found to be 28%. The computed increments g_{TRE} are shown in Table 1.

Discussion

The aforementioned considerations lead to the conclusion that the topological resonance energy is a quantity , which is to a great extent nodally dependent , but not so

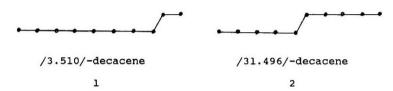
TABLE 1. The additive nodal increments

Node	(Fig.3)	g 6	ā8	g10	gtre
	1	12	96	540	0.273
	2	12	128	970	0.189
	3	12	160	1480	0.084
	4	12	160	1520	0.149
	5	12	144	1240	0.155
	6	12	192	2190	0.141
	7	12	176	1830	0.080
	8	12	160	1530	0.146
	9	12	192	2200	0.092
1	.0	12	192	2590	0.116
1	.1	12	176	1840	0.080
1	.2	12	192	2210	0.118
1	.3	12	192	2220	0.076

strictly as for example the total pi-electron energy. Three point should be accentuated :

<u>i</u>) The calculation of TRE by means of the ANI approach can serve as a guesstimate for the stability of a given compound when the exact calculation of the TRE is tedious and laborous. For example, the exact/ANI values of the TRE are: for /14.6.7/-octacene (bisanthene) 0.968/0.932 and for /3.7.6/-heptacene (pyranthrene) 0.924/0.985.

 \underline{ii}) In some cases the ANI treatment fails to differentiate the isonodal hydrocarbons with respect to their TRE values. The compounds 1 and 2 can serve as an example :



<u>iii</u>) The ANI approach shows correct asymptotic behaviour of the TRE(PE) (TRE per electron) for the linear and the zig-zag polyacenes with the infinite number of rings. For both classes the TRE(PE) tends to finite values in agreement with the exact ones⁸. Other published formulae^{9,10} give wrong estimates in this case.

References

- [1] A.Graovac , I.Gutman and N.Trinajstic : Topological
 Approach to the Chemistry of Conjugated Molecules ,
 Berlin Springer-Verlag , 1977
- [2] I.Gutman , M.Milun and N.Trinajstić , J.Amer.Chem.Soc.
 - J.Aihara , J.Amer.Chem.Soc. <u>98</u> (1976) 2750
- [3] E.J.Farrel , J.Comb.Theory <u>B27</u> (1979) 75
- [4] J.Ciosłowski , Theor.Chim.Acta (Berlin) 68 (1985) 315
- [5] J.Ciosłowski , Chem. Phys. Lett. 122 (1985) 234
- [6] J.Ciosłowski , Theor.Chim.Acta (Berlin) , in press

- J.Ciosłowski , Chem.Phys.Lett. , submitted
- [7] I.Gutman , S.Petrović and B.Mohar , Coll.Sci.Pap.Fac. Sci. Kragujevac 3 (1982) 43 , 4 (1983) 189
- [8] I.Gutman , Z.Naturforsch. 37a (1982) 248
- [9] I.Gutman , Z.Naturforsch. 36a (1981) 128
- [10] M.Zander , Z.Naturforsch. 40a (1985) 636