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Abstract. A novel upper bound for total w-electron energy of

alternant hydrocarbons is derived. Conditions under which the
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present result is better than Tiirker’s upper bound (Match 16, 83

(1984)) are examined.

In a recent paper [1] one of the present authors derived

an upper bound

for total w-electron energy of alternant hydrocarbons and showed

that his bound is better than that of McClelland

EN =1/ 2Ne

namely that the following inequalities hold

Here and later E" denotes the exact value of the Hiickel molecular
orbital total w-electron energy in f units.
In the present work we shall derive another upper bound,

viz.,

_ 3 = _ ‘f 3
EG = 2 -J'G ﬂ nag + 3e vdma4 + e Be” /N
and show that for large enough conjugated systems,

E_ EE. & B & B 1)

As a matter of fact, the left- and right-hand side in-

equalities in (1), namely EW £ EG and EL & EM hold for arbitrary
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alternant systems. The conditions under which EG £ EL also holds

will be discussed in full length later on. It should be pointed

out that violations of EG < EL

graph has small number of vertices (eight or less). In the great

exist, but only when the molecular

majority of chemically relevant cases EG < E. and therefore (1)

L
are valid.

The notation used in this paper follows completely that of
ref. [1] and will be, therefore, not explained in full detail. In

particular, the molecular graph under consideration has N vertices

and e edges and the auxiliary quantities m and n are defined as

m = (Né?') - N(N-2)/8
and
n = (Néz) = N(N-2)(N-4)/48.

P(x) = x" + a, L a, W2y,

and

k
(=1 ey, 20

for all k > O.
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2. The Main Result

In order to obtain our main result, namely

E_<E (2)

we need some preparations. Dencte the graph eigenvalues by

x1,x2,...,x and label them in non-increasing order. For alternant

N
hydrocarbons (=bipartite graphs), we have then [1]

N/2
E =2 [ x, (3)
" j=q 1
N/2 2
e =L Xy (4)
i=1
N/2
262
a, = L xix% (5)
4 i<3 : Gl |
N/2
ag = E xix?xiA (6)
i¢ick J
Define, in addition, an auxiliary function Q as
N/2 3
Q=2T8L X3 (7)
i=1

Next one should note that for any non-negative real

numbers a1,a2....,ap the following inequalities

-1 P
a, < [p L aiZ]”2
1 i=1

P

-1 P
(8)

1



P
-1
[p

=1

1/2 -1 g 37173 iy
i =

af] < [p

as well as the equality

P P, p P, P 4
6 L[ ajaa =[Lal -3LallLajl+t2L a] (10)
iGeae 23 i=1 i=t b =1 i=1

hold. In particular, the expression (10) is one of the so called

Newton’s identities.

Having in mind (9) we can write

N/
L
i=1

2

3 N2 .
CTEIRAE I o Rl o S S R
i=1

from which (4) and (7) yield straightforwardly
0 > N2e/m) /2. (1)

Setting p=N/2 and a; = x; into (10) and using (3), (4) and (7) we

arrive at
N/2 3
_(ﬁ(k XXX, = [(E“/Z) - 3eE_/2 + Ql/6. (12)
1<]

Observe that on the left-hand side of (12) there are exactly n =

(Nézl summands of the type xixjxk. Then, as a special case of (8)

we have

n L x.x.x, < [n_1 in [xixjxk)2]1/2.

1<k
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Combining the above inequality with (6) and (11) one arrives at
3 B 1/2 1
(E“/2) 3eE"/2 + Q £ 6¢( nac) " (13)

Note that eq. (13) was obtained by a reasoning which
parallels (but, of course, is not identical to) that of ref. [1],
where (8) has been combined with (5) and another of Newton's

identities to give the result ETr L E Here, however, a further

L
complication occurs by the appearance of the term Q. In order to

eliminate it from (13), use (11) to get
(E /2)° - 3eE_/2 + N(2e/m)3/? ¢ 6(-na) /2. (14)

The above inequality is cubic in E" and is therefore of little
practical applicability. This problem is overcome by replacing E“
in the second term on the left-hand side of (14) by its upper

bound EL:

/2 /2

3 3 1
(5“12) - eEL/2 + N(2e/N) £ 6(-na6) .
This latter inequality can be explicitly solved in EL and results
in (2).

i )

3. Is EG Better than EL

In the following table E", EG. EL and EM values are

collected for a few selected conjugated acyclic and benzenoid



- 153 -

hydrocarbons.
molecule N e E1T EG EL EM

vinylbutadiene 6 5 6.90 720 7.14 7.74
2,3-divinylbutadiene 8 7 9--33 9.80 9.93 10.58
3J-vinylhexatriene 7 9.45 9.95 10.07 10.58
3,4-divinylhexatriene 10 9 11.92 12.65 12.85 13.42
benzene 6 6 8.00 8.16 8.10 8.49
naphthalene 10 11 13.68 14.16 14.35 14.83
coronene 24 30 34.57 36€.97 37.40 37.95
hexabenzocoronene 48 60 69.26 74.87 175.35 75.89

As it can be seen, (1) is not obeyed in all cases, vinyl-
butadiene and benzene being exceptions. In the great majority of
cases, however, the inequalities (1) are fulfilled. As a matter of
fact, they have been tested for more than a hundred benzenoid
hydrocarbons and found to fail only in the case of benzene. They
hold also for all even cycles with N vertices, N>6.

We demcnstrate now that violations of (1) will not occur
if the alternant conjugated system considered is large enough.
According to our experience "large enocugh” here means "ten or more
conjugated centers” .

Suppose now that the molecular graph has large N and e

values, but a finite e/N ratio. Then we may write

a, v (e®-ne)/2 (15)

ag o ~(e’-3Be?)/6 (16)
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where “ means asymptotically equal. The constants A and B depend
in a certain way on the structure of the graph considered. In
Appendix 1 will be shown that for a molecular graph having V2
vertices of degree 2, V3 vertices of degree 3 and R4 four-membered
cycles,

AN 1+ 2(V, + 3V, + 2R /e a1
N/2

Bva- 2017 T x. (18)
i=1 *

Taking into account only terms of the order N v e

Me)"2 ana NV v e v (ve) /2 ana neglecting terms of order
N2ne2n (Ne)™! and smaller, we prove by routine but somewhat
laborous calculation that
-1/2
E.-E. v (2e/N) (2B-A-2e/N) /2. (19)

L G

It is now evident that the relation E. > E. (and therefore (1))

L = °G
will be fulfilled if the right-hand side of (19) is positive.

Hence

2B-A > 2e/N (20)

must hold in order to be able to give a positive answer to the
question posed in the title of the present section.

The relations (17)-(19) are asymptotically correct, that
is they hold in the limit when N and e tend to infinity. The
inequality (20) gives, thus, conditions for the validity of EG &

EI also in this limit case. It is, however, clear that (17)-(19)
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will be "almost" correct if N and e are large enough and, conse-
quently, (20) can be applied for large enough molecular graphs
too. What “large enough" means is not clear from the present
discussion. As already mentioned, our numerical experience
indicates that (17)-(19) are applicable as acceptable approxi-
mations for molecular graphs with more than ten vertices.
Consider first the following two examples. For the path

graph (with N vertices and e=N-1 edges),

8, = (NEZ) v (e2-3e) /2

and

a, = f(N53) N —{e3g9e2)/6,

Hence A=B=3. Since e/N ~ 1, relation (20) is obviously fulfilled.

For the cycle (with N vertices and e=N edges),

N-2

8, = g (50 = (efaae2

and

P | N-3
a, = { 3

6 N-3 ) *(e3—932)/2

and we reach the same conclusions as above.
In the last part of the subsequent section the validity of

(20) for (large) benzenoid hydrocarbons will be demonstrated.



= 156 =

An important feature of the upper bounds EL and EG is that

they depend on the coefficients of the characteristic polynomial.

Whereas EL depends on a, and a2 = -e, EG is a function of aG, a4
and as. Therefore a better understanding of the dependence of EL
and EG (and thus also of E“) on molecular topology requires the

examination of the topological dependence of the coefficients a,

and ac-

Both EL and EG exhibit a fairly perplexed, but analyti-

4 and ag. It is not difficult to

see that EL is a monotonously increasing function of ay, whereas

EG is a monotonously increasing function of both a, and “ag.

cally well defined dependence on a

The problem of a, is relatively simple and has been
(independently) solved by each of the present authors [1], [2],

[3]). Hence it has been shown that for molecular graphs

—_ e et - -
By (2) 2R4 v 3v

4 2 3 (21

where (as before) 24 stands for the number of four-membered cycles
and Vi counts the vertices of degree i. A generalization of eq.

(21) is

= (&) - x5 - - = -
a, = (2) 2R4 V2 v 6V 10v

For benzenoids, (21) reduces to
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iy (e®-9e + 6N)/2 (22)

showing that both a, and EL depend solely on the parameters e and

4
N and are therefore unable to distinguish isomers. This latter

conclusion holds for acyclic molecules as well.

The problem of a, is considerably more difficult. We point

6

out some results along these lines [4].
The coefficient a6 for the path and the cycle with N

vertices is given by

ag = -(e-4)(e-3)(e-2)/6 + (e—4)a—2R6 (23)

where 5=0 for the path and &=1 for the cycle. Here and later R6

denotes the number of six-membered cycles.
For any set of benzenoid hydrocarbon isomers, the

differences in a_ are equal to the differences in the number of

6

concave bay regions (Nb) [3]. For example, the anthracene molecule
has no bay region (Nb=0) and ag = -296. The phenanthrene molecule

has one bay region (N,=1) and a, = -297 [5]. Thus a_ + N, is a

b [3 b
graphical invariant for benzencid hydrocarbon isomers.

6

Assuming that the term ac + Nb has the same form as in the

case of the path and the cycle, eq. (23), we write

ac + Nb = -(e-4)(e-3)(e-2)/6 + uef

+ Bei + ¥ v2R6
where e, is the number of internal edges bounded by two fused
rings and «, B and y are parameters to be determined from known

data for benzenoid hydrocarbons [4,5]. The solution of o, B and ¥
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gives then

a, = —(e3-27e% + 15Be + 48)/6 -

= - 2 24)
3N(e-8) N . {
Using (22) and (24) it is possible to confirm the validity
of (20) in the case of (large) benzenoids. For large e and N, eqs.

(22) and (24) result in

a, ~ [e° - (9-6N/e)el/2

4
and

3

a_n -[e> - 3(9-6N/e)e’]/6.

6

Bearing in mind (15) and (16) we see that
A =B =9 - 6N/e

and therefore EL > EG whenever

9 - 6N/e > 2e/N. (25)

The solution of (25) reads 0.8 ( e/N ¢ 3.7, which is obviously
fulfilled for all benzenoids. This explains why the new upper
bound (EG) is found to be superior to the old one (EL) in all
benzenoid systems with two hexagons or more. (Benzene also
satisfies (25), but fails to satisfy the relation E, < Ep . This

is, of course, no contradiction because for the applicability of

(25) it was required that the benzenoid system is large enough.)



= 59 =

Appendix 1
erivation o s 17, d (1

In order to deduce formula (17) rewrite (15) in the form
2
AN (e - 2a4)/e

and insert into it eq. (21).

Note that by the Newton’'s identity,

{2
L xq = e2 - 2a

N
i=q * 4-

i
Therefrom we conclude that
N/2 4
A~ (1/e) L Xy {(26)
i=1
Eg. (18) is obtained starting with another Newton’s

identity, viz.,

N/2
E xg = e3 - 3e a, + 3a6
i=1

and combining it with the definition (16) of B, namely
B~ (E3 - 6a6)/(3ez)
and with eq. (21).

For e+« the right-hand side of (26) is finite. Therefore

the limit of
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is finite and consequently the term

N/2
(1/e2) L xg
i=1

vanishes as e tends to infinity. Consequently, for sufficiently

large molecular graphs,

Appendix 2

In addition to (8) and (9) the following inequality

holds. Identifying the numbers ai with the first N/2 graph eigen-

values one obtains

(3%

E /M Iy L Xf]”G

> N [6], we conclude

where, of course, eq. (3) was used. Since E“

that
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By inserting this inequality into the expression for B, eq. (18),

we get finally
B <1+ 2 (V,+ 3V, + 2R,) —N/(32)
£ 2 3 yie =
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