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Abstract: If G and H are two graphs, 9, and 9, vertices of G,

h, and h, vertices of H, then G:H is obtained by

1 2
identifying 93 with hi , i=1,2. Recurrence relations
for the u-polynomial of G:H are deduced and some ap-
plications to the theory of S- and T-topomers given.

An unsclved problem concerning u-polynomials is point-

ed out.
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Introduction

The H-polynomial concept was introduced and elaborated in
[1]1. It provides a unification of two important graph-theore-
tical polynomials, namely of the characteristic and the match-
ing polynomial.

Let G be a graph. Then its p-polynomial W (G) is defined as

[1]:

c(s) 2r(s) xn-n(s) T{(s) (1)

u(G) = (=1}

1
s
where s is a Sachs graph and the summation goes over the set
S(G) of all the Sachs graphs which are as subgraphs contained
in the graph G. For other symbols used in (1) the reader should
consult ref. [11,

In the following we shall write eq. (1) in an abbreviated

form as
u(G) = sumls(qc)] . (2)

If G contains the cycles 21,22,...,2 then j, (G) depends on

2
a vector t = (t1,t2,...,tr) whose component ta is a variable
weight associated with the cycle Za ¢ 85y 2iaes ) B PO £ = 3
(i.e., for t1 T g RIS tr = 1) the p-polynomial reduces to the

characteristic polynomial. For t =0 (i.e. for ty =ty =
= b, = 0) the py-polynomial gives as another special case the
matching polynomial. If the graph G is acyclic (r = 0), then

the -, the matching and the characteristic polynomials of G co-

incide.
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The fundamental properties of the u-polynomial are exposed
in [1]. Further results along the same lines can be found in
[2-7]. Because of its dependence on the vector t, the u-poly-
nomial is especially suitable for modeling the effect of cyclic
conjugation on various wm-electron quantities [1,8-11].

In the present paper we offer some further relations for the
p=-polynomial and point out an application of the results obtained

to the theory of S- and T-topomers.

Preliminaries

In [1] the following recurrence relation for the p-polyno-
mial (called Corollary 4.3) was given without proof. Let 94
and h, be two vertices of the graphs G and H, respectively and

let G-H be obtained by identifying 94 with h Then

1-
w(G-H) = p(G) u(H1) + U(G1) W(H) - x u(G1) N(H1) (3)
where G1 = G—g1 , H = H—h1
The proof of (3) is simple. Denote the vertex obtained by

identifying g, with h, by f.,. Now the set S(G-H) can be parti-
1 1 1

tioned into disjoint subsets §g(G-H), éh(G-H) and éo(G'H)’ such

that
ég(G-H) = set of the Sachs graphs of G'H in which the vertex
f1 belongs to a component which is entirely in G;
gh(G‘H) = set of the Sachs graphs of G+H in which the vertex

f1 belongs to a component which is entirely in H;
§O(G-H) = set of the Sachs graphs of G-H which do not contain

the vertex f]_
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From these definitions is immediate that

il
1%}

S4(G-H) U S (GH) = S(G + Hy)

§, (G-H) U S_(G-H)

I
lln
@

§,(G-H) = S(X, + G, + H))

where K, is the one-vertex graph. (In the above formula, the

1

unique vertex of K, corresponds to the vertex f,.) Here and la-

1 1"

ter Ga + Gb denotes the graph whose components are Ga and Gy

Using (2) we now have
u(G-H) = sum[S,(G-H) U S, (G-H) U S (G-H)] =
= sum[gg(G-H) U QO(G-H)] + sum[ih(G-HJ U gO(G-H)] =
- sum[S_(G*H) ]
Hence
H(G-H) = (G + H,) + u(G, + H) - u(K, + 6, + Hy) (4)
from which formula (3) follows when one uses the facts that [1]
uiG, + 6.) = u(G,) uiGy) (5)

and u(K1) = X.
The crucial step in the above proof is the partitioning of

S(G-H) into §g(G-H), gh(G'H) and SO(G-H). This is possible be-

cause the vertex f, is a cutpoint and therefore there are no

1

Sachs graphs of G-H in which f. belongs to a component (= a cycle)

1
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which is partially in G and partially in H.

The p-polynomial of the graph G:H

Formula (3) is concerned with a graph obtained by coalescing
one pair of vertices. We shall now extend the consideration to
the case where two pairs of vertices are simultaneously identi-
fied.

Let G be a graph and 9, and 9, its two distinct vertices.
Let H be another graph and h1 and h2 its two distinct vertices.
Construct the graph G:H by identifying 94 with hi , i=1,2. The
two newly formed vertices will be denoted by fl and f2, respect-
ively.

Our aim is to derive a recurrence relation for ¥ (G:H) as
similar to (3) as possible. In order to achieve this goal, par-
tition the set S(G:H) with respect to the vertex f1 in the same
manner as before. 1In addition to gg(G:H), ih(G:H) and ED(G:H)
we must now introduce a fourth subset, namely

égh(G:H) = set of the Sachs graphs of G:H in which the ver-

tex f1 belongs to a component which is partially
in G and partially in H.

Then
S(G:H) = ég(G:H) U éh(G:H} u §O(G:H) U igh(G:H)

and furthermore

§4(GH) U 5, (G:H) = S(G-H,)

gh(G:H] U EG(G:H) = §(G1-H)
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it
Q
=}
1

Bk, Fomyemg)

where G:H, denotes the graph cbtained by identifying the vertex

9, of G with the vertex h2 of H1 i the graphs G1-H and G1-H1 are

defined analogously.
The situation with the set ggh(G:H) is slightly more compli-

cated. If s € ggh(G:H), then the component of s to which f1 be-

longs is necessarily a cycle. Bearing in mind the way in which
G:H has been constructed, we conclude that every such cycle must

pass through both f1 and f2' Therefore an arbitrary such cycle,

say Zab , can be viewed as obtained by combining a certain path

Pa » which connects the vertices 9 and 9, of G with another path

Pb , which connects the vertices h1 and h2 of H., Furthermore,

G:H-Zab = (G—Pa) + (G—Pb) 3

Applying (1) we conclude that

sum[ggh{G:H)j = -2 B ot sum[§(G:H-Z,

)1
ab b

E

=23 (G-P,) u(H-P)
a

ab ¥ b

z
b

where tab is the weight associated with the cycle Z, The double

bt
summation in the latter equation embraces all pairs of the previ-
ously specified paths P rPy-

Substituting the above relations into the identity

w(G:H) = sum[géG:H) U S, (G:H)] + sum[S, (G:H) U §_(G:H)] -

- sum[go(G:H)] + Sum[ggh(G:H)]



e

we reach one of our main results:

W(G:H) = W(G-H,) + u(G,"H) = u(K, + G "H,) -
(6}
-2l tin u(G—Pa) U(H-Pb)
ab
which should be compared with eq.(4). Of course, u(K1 + G1'H1)

=x u(GT'H1)

As a matter of fact, eq. (3) is a special case of (6). Na-
mely, when 92 and h2 are not identified, then G-H1 =G + H1 i
G1-H = G1 + H and G1-H1 = G1 + H1 , and the relation (5) can

be used. Since there are no cycles of the type Za the double

b r
sum in (6) vanishes. Then (3) follows from (6).

The recursion relation (3) can be applied to the first three
polynomials on the right-hand side of (6) and an elementary cal-

culation gives our final result:
B(G:H) = n(G)u(H ) + w(Gu(Hy) + u(Gylu(Hy) + u(G ) u(H) -
= xDu(G U (H 5) + u(Gy)piHy ) + (G )u(H) + u(G)ulH)] + (7)

+x2 (G, - 2 €, W(G-P_)u(H-P.)

L%
ab
where G.|2 = G-g1—g2 and H12 = H-h1~h2.

Application: Topomers

Let A be a graph and p and g its two non-equivalent vertices.
Let B be another graph and r and s its two non-equivalent verti-
ces. Construct the graph S* by identifying p with r and g with s.

Construct the graph T* by identifying p with s and q with r. Then



u(T*) - u(s*) = {p(A-p) - p(A-@) Hu(B-r) - u(B-s)} . (8)

Since the graphs S* and T* are both of the type G:H, one may
apply eq. (7) to them. Formula (8) follows then straightforward-
ly.

Let S (respectively T) be obtained from A and B by joining
the vertices p with r and g with s (respectively p with s and g

with r). As a consequence of (8) we have then
w(T) = u(s) = {u(A-p) - u(a-g) Hu(B-r) - p(B-s)} . (9

Note that the right-hand sides of (8) and (9) are identical.

In order to see that (9) is a special case of (8) consider
the auxiliary graph aP9, obtained from A by attaching a new ver-
tex to each p and q. Let these new vertices be labeled by p”~
and q°, respectively. One should now observe that S (respecti-
vely T) can be constructed from aPY ana B by identifying the
vertex p°” with r and q” with s (respectively p” with s and g~

with r). This enables the application of (8), viz.,
p(r) - u(s) = (pwaP9p’) - p(aP9%q’ ) Hu(B-r) - u(B-s)} .
Eg. (9) is now a consequence of the relations

w(@Plp) = x p@) - ua-Q

and

n

u(qu-q') x u(A) - u(A-p) .

Formula (9) was first derived in [2]. The special cases of

formula (8) for t = 1 (characteristic polynomial) and for t =0



(matching polynomial) were recently obtained using a different
way of reasoning [12].

We wish to point here at a generalization of (8). Suppose
that the edges of A and B are weighted so that all edges incident
to p,q,r and s have weight kp,kq,kr and ks' respectively. These
weighted graphs will be denoted by Ak and By s respectively and
the corresponding topomer graphs by Sﬁ and T¥. Of course, for

k

— = = = i L4 #*
kp kq kr ks 1 the weighted graphs Ak' By, Sk and Tk
coincide with the simple graphs A, B, s* and T*, respectively.

It can be proved that instead of (8) we have

W(TE) = u(sP) = (k2Mu(A-p) - x u(A-p-q)] -
= k;[u(A-q) = K u(A—p—q)]}{ki[u(B—r) - x u(B~-r~-s)] -
- ki[u(B-s) - x u(B-r-s) 1}
whose special case for kp = kq 5 kr = ks =k 1is
wTE) - uisp = kfuTen - wsnl . (10)

For the topomer graphs S and T a reasonable weighting is to
associate weight kP and kq to the edges of aPd, connecting p
with p° and g with g°, respectively, and to assume that all other
edges have normal (= unit) weight. Then a reasoning analogous to

that used to deduce eq. (9) yields

2 2
U(Tk) = H(Sk) = {kp p(A-p) - kq u(A-q) Hup(B-r) - u(B-s)}
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which for kp = kq = k becomes

(T, = u(sy) = KM - w(s)] . (1

The special cases of formulas (10) and (11) for t = 1 and
t = 0 played an important role in the proof of the TEMO inter-

lacing relations [12,13].

A problem

If G is a graph and 9 and g, are two of its vertices, then the
equality (12) is known for the characteristic polynomial ¢ [14,
15,16] and a similar relation (13) for the matching polynomial a

(171:

= » 2
$(G1)8(6)) = $(G14(61) = (5 8(6-P,)] (12)
#(61)a(6y) - a(@alGy) = 3 la(c-p)1? . (13)

The notation in (12) and (13) is same as in the previous sections:

G1 = G-g1 3 G2 = G—92 7 G12 = G—g.l—g2 % Pa is a path connecting
9, and 9, and the summations range over all such paths.
What would be the u-polynomial equivalent of the formulas

(12) and (13) ? This seems to be a difficult problem.
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