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The recurrence relation of the order eight for the
matching polynomial m(Ln) of the long benzene chain,
given by Theorem 4 in Ref. [1], has been recently de-
rived by Farrell and Wahid. It is to be pointed out
that a recurrence relation of a lower order, i.e. of
the order four, can be obtained following the general

procedure described in [2]. The relation reads as:
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where m(Ln) is abbreviated by Ln' The initial polyno-

L., and L, are the same as in Table 1 of [1J].
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The graphs which exhibit one-dimensional periodicity

have been already introduced in the literature [37.
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They are called fasciagraphs Fn and rotagraphs Rn when
they have open and closed ends, respectively. The ben-
zene chain A C4] and the long benzene chain L (1] are
the special fasciagraph and rotagraph, respectively, with

the following repeating monomer graph:

The method presented in [2] is derived for the reference
or acyclic polynomial, but is easily modified for the ca-
se of the closely related matching polynomial as defined
by Farrell [5J. 1In the last case the elements of the
T-matrix, which represents the base for the derivation

of the recursion formulas [2], are given by:
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where A°179J denotes the matching polynomial of a subgraph
obtained by deletion of sets of vertices G and Gj out
from A. For the details the reader is referred to the
Ref. [2]. Taking (2) into account, T-matrix for both the

benzene chain and the long benzene chain reads as:
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The characteristic polynomial ¢(t,\) = det()AI-T) is
easily evaluated and the use of the Cayley-Hamilton

theorem:
¢(T,T) = 0 (4)

straightforwardly yields the recurrence relations for
m(An), m(Ln) and the matching polynomials of some sub-
graphs of An C2]. E.g. by equating the matrix elements
in the first row and in the first column on the both si-
des of eqn. (4), the recurrence relation for m(An) fol-
lows. Because of m(Ln) = tr(Tn) (27, where tr denotes
the trace of the matrix, the recurrence relation (1) for
m(Ln) is obtained by equating the trace on the both si-

des of egn. (4).

The presented formalism obvicusly shows its advantage
over the extremely tedious algebraic manipulations of [1].
Generally, it yields the recurrence relations of the
order 2R for m(Rn] and of the order lower or equal to

2% for m(Fn), where 2 denotes the number of linking

edges between the monomer graphs. 1In the case of Rn = Ln,



¢ equals 2, and the recurrence relation for m(Ln) is obvi-
ously of the order four. 1In the case of Fn = An, the
recurrence relation is of the order 3 < 22, what has been

already proved in the literature [6J.

Moreover, the formalism of [2] applies generally to any

Fn and Rn and its application is the matter of routine.

The above comments apply as well to the recurrence rela-

tions for the number N, of defect-d matchings and the num-

d
ber Vi of k-matchings in E. and R . Especially, for the
long benzene chain, instead of Theorem 5 and Theorem 8

of (1], one derives the following, lower order recur-

rence relations for Nd(Ln) and Yk(Ln):
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with the same notation and with the same initial condi-
tions as in [1]. The following convention holds: Nd =0
for d<0 in (5), and Ty = 0 for k<0 in (6). Owing to the
simpler recurrence relations one is able to proceed fur-
ther in the derivation of the explicit expressions for
Nd(Ln) and yk(Ln). E.gu N4(Ln) reads as:
1.6 5 4 3 2
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