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For the central subunit in the topological model depicted
in Scheme 1 some structures are assumed and it is shown for which
structure and under what conditions TEMO without inversions is

assurced.

For Part 1 see reference [1].
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1. Introduction

In the previous note a topological model has been treated
(subsection 4,1 in [1]) in which the topologically related isomers

are constructed in accord with the scheme 1 below:
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Scheme 1

If the following conditions are supposed,

(1) the terminal subunits, A and B, are isomorphic and

(i1) the central subunit C possesses a structure such that the
vertex a may be mapped automorphically onto the vertex b and
simultanous the vertex e onto f and vice versa by an appropriate

symmetry operator, P, i.e.:

Pa = b, Pb = a, Pe = f, Pf = e , (1)
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then the difference polynomial A as defined by eq. (4) in [1]
takes the form given by eq. (35) in [1], which reads as follows:
ae

§ = iy et (2)

Evidently A and its factor (Caf_cae) have the same sign. Because
4 > 0 is a sufficient condition for the appearance of TEMO
without inversions one is interested in central moieties which

af

have a structure such that (C Cae) is positive:

Some particular examples for this are given in [2]. In the present
note some general structures (I-V) for the central moiety C are
considered with respect to eq. (3). Because the symmetry of C as
expressed by eq. (1) is an essential precondition for obtaining
eq. (2), all the general structures treated here must exhibit this
symmetry.

The general structure I differs from the other ones in the
following point: Only in T has the vertex subset {a,b,e,f} the
property of a cut set: its removal decomposes I inte four
components. In II this subset is no cut set at all while in III-V
certain intermediate situations are realized. Tt will turn out
that only in the case of I, IV, and V are there real chances to

achieve the demand given by eq. (3).
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Throughout this note the same notation is used as in [1];
references 9 and 15 cited in [1] should be stressed as well as the
convention of using the same symbols for any graph and the p-poly-

nomial associated with this graph.

2. Struc

The general structure assumed here for the central moiety
C is depicted in Figure 1. It consists of four unspecified sub-
units F, G, H, J, the vertices a, b, e, and f, and some edges
which connect a with F and H, b with G and H, e with F and J, and

finally f with G and J.
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Figure 1: Structure I
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Due to the symmetry operator P we have for the subunits T, G, H,

and I the following relations additional to egq. (1):
Pl = H , PJ = J , (4)
PF = G , PG =~ F

Eqy. (4) requires that F and G are isomorphic and further, that H
and J are symmetric with respect to the symmetry operation P.

A consequence of the isomorphism of F and G is that the
number of edges which connect a with F and b with G, respectively,
must be equal, the number of those edges which connects e with F

and £ with G must also be equal. This is accomplished by assuming

-
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1, IA & F, uA &€ G ; (5)

Pv =132, Pz =v , 1{ys<m 2z EF, v &G ;
=3 H H

=
=
™
©
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where 1 and m are independent of each other.

The symmetry of H and J with respect to P demands

Ps =t , Pt =s, 1<k <k, s,t €H; (6)
K K K K K K

Pw =Y, Py =w, 1&v<{n, w,y &J
v v v v == s v Vv

Once again, k and n arce independent numbers; they denote the
number of edges which connect the vertex a(b) with H and the
vertex e(f) with J, respectively.

An inspection of Fig. 1 shows that Caf and c*® are dis-
connected graphs which consist of two components. In the case of

Cdf the one component is formed by the subunits T and J which are
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connected with each other via the vertex e; the other one is
formed by G and H, connected via vertex b. The vertices b and f
are articulations in their components; the cycles to which they
belong are fully localized in one subunit. In the case of Cae the
one component is identical with F; the other one consists of the
subunits G, H, and J which are connected with each other via b and
f, respectively, in the same manner they are connected in C. The
vertices b and f are articulations in this component. The cycles
to which either b or f belongs are fully localized in one of the
adjacent subunits. Apart from these there are cycles to which b as
well as f belong; these cycles consist of two paths which connect
u, with vp and u, . with v“,, respectively, and the edges (buA},

[buk.), {fvul, and (fvu.}.

& and that of b

The removal of the vertices b and e from ¢
and f from cae' respectively, results in a graph which consists of
the four components, F, G, H, and J. Hence, the polynomials Caf
and c2e may be expressed as a sum of tetralinear terms made up of
the polynomials associated with these graphs F, G, H, and J or
with some of their partial graphs.

Recently a special formula for the polynomial of a graph G

has been derived [3] for the case in which all the edges incident

with an given vertex u, have been removed:
G = x6"-L6"V-2¢LGY . . (7)

where v and v~ denote vertices which are adjacent to the vertex u

(the neighbours of u form the subset (v |1£v{g} where g denote the
5 -
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degree of the vertex u). The first summation runs over the set
(vT). the second one over all the pairs {(v .vY,)I1$1<1'ig} which
may be formed from the set (VY). This double sum represents the
cyclic contributions (note: a cycle to which u belongs is composed
of the edges (uv},{uv’}, and the path va,). The first term, xGu.
represents the product of the polynomials of the partial graphs
which are generated by the removal of the edges ({uvT)|1$1$g);
note that x represents the polynomial of the partial graph which
consists of the single vertex u only. Eq. (7) describes the
partition of the graph G at its vertex u.
The application of eq. (7) to the partition of Caf at the

vertex b results in

caf _ xcabf_zcabft_Ecabfu_2t22C§b§ " 2t£ECAb§ . (8)

tt uu

The first two summations run over the vertices adjacent to b,
namely ltK) and luA}. respectively. The last two summations run
over the pairs (ltK,tK,III;K<K';kl and l(uA,uA,)|1;A<A'ill,
respectively; these two terms of eq. (8) are generated by the
removal of the cycles to which b belongs and which are fully
localized either in H or in G. All the terms of eg. (8) correspond
to graphs which contain the vertex e. The partition of all these

graphs at the vertex e results in
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Caf -
= x°p - xgot - xgp" = Peafl, - 2exED .
x£p¥Y + Tp%Y ¢ ¥ 4 2epel,. + 2€EDY .
- xIp? e i i e + 2eRn. . + 2tIps . (9
- SERED, v % ZtED;Y, + 2¢DD) . + 4tZEDtt_JYY_ 2 4t2EDuu.’yy_
- 2txID,, . + 2¢LD.,. + 2¢tEDL . + 4tZEDtt',zz’ + 4t2EDuu,'ZZ,

In order to reduce the number of indices which must be indicated,

CabEf (Note: D is

in these expression we use the abbreviation D =
a disconnected graph which consists of the components F, G, H, and
J). Also double, triple and quadruple summations are not
especially indicated; evidently, the summations must be carried
out over the complete sets of the indicated vertices and pairs of

vertices as has been discussed in the context of eq. (7).

Applying eq. (7) to c®® in the same manner one obtains:

cae
= %°D - xgp® - xED% - 2exiD,. - 2txED .
- xopV % Ep=Y + oYY + 2tEDY, . + ZtEDxu,
- xCp"” + 0™ o+ DWW . EEDY, § 2¢E0 . (10)
- 2exfD_ . + ZtED:V, + 2tDDY .+ 4t22Dtt',vv' + 4t2£nuu’,vv'
~ 2txID__ . + 2t:n$w, % ztzniw, + 4t2£ntt‘,ww‘ + 4t2£Duu"ww,

The terms of the first row of egs. (9) and (10) are pair-

af—Cae). But there are

wise identical; hence, they cancel in (C
mere terms in these two equations which are equal as a consequence

of the presumed symmetry. This will be exemplified for



v

ID” = ID

Expanding these sums in terms of F, G, H, and J one obtains

oY = F(ncV)ng

LD

Z = (CF%)GHJ

n

Now from the isomorphism of F and G, as expressed in eq. (4) by
PF=G and PG=F, it follows that their polynomials are equal, F=G.
From the second line of eq. (5) it is obvious, that for each pair
v and zu there are equal polynomials contributed to the suns EGV

p
and EFZ, respectively. Therefore, the following egquality holds

F(EcY) = (ZF%)6 ,

which proves oV = EDZ, g.e.d.

In this manner the following equalities are derived:

o' = pf, " = oY,
[Dtv - EDtzr EDtu - ZDty. ED“W = Enuy'
B0, = LD, .0 ID. = LD, (11)
¥ oo z W - rp¥ W - vp¥
EOpyr = D0gers IDge- = DDGyos DDy = IDGy-s
1 S t o TR |
[nyy, = erw" EDZZ. = [va,, [nyy. = EDHW_
EDtt',w' - EDtt’,zz" EDtt’,uw’ = EDtt',yy“ EDuu',ww’ & Enuu',yy'
af _ae

Taking all these equalities into account, (C° -¢%7)

results in



(C“f—cdu) = D

uz uv

Z \Y 3 u »
LD +28(fD . - ID ) + 2¢(LD__ ., Lo, !

)
+ 4t {Enuu,'zz, = Enuu',vv'}

This expression may be transformed into tetralinear terms made up
from ¥, G, H, and J; if in addition the following equalities arc
considered

v

R EFZZ. E EGVV, i (11a)

which arise from isomorphism of F and G, onc¢ obtains

caf . e
= HL(Ee" (ze”) - oE6"] + 2e[(E6") (LG )
\" u u
GEG”u. 1 (LG )(EGW,) = GEG -1 + (12}
2
oAt [(EGUH.)(EGW,) : GZGUH,'W,})

The number of terms with plus and with minus signs,
respectively, are equal in eq. (12). Hence, it is impossible to

af ohe

conclude from eq. (12) wether eq. (3), i.e. (C Yy > 0, is

satisfied or not. Thus, first of all, eq. (12) needs a
transformation inte a form which permits such a conclusion. For
that purpose the terms in the brackets appearing in egq. (12) are
now examined bracket by bracket.

In the first brackets the summations run indepently over

the sets (UA, and (V“). respectively. Hence, this term may be



- 177 -

rewritten as follows:

VR SR €L e Lt

It has been shown [4,5], that the expression in the round brackets
may be transformed for any pair u,v as follows:

g = ga™ gt . (13)

Thus, for the first brackets of eq. (12) the following equality

arises

™) (ge) - aEe™1 = L LIG, 12 (14a)
u v
(Note that by definition Guv involves a summation over the set of
paths {P 1} which connect the vertices u and v in G). Because the
right-hand-side (r.h.s.) of eq. (14a) represents a sum of squares,
this term will be positive in the complete range of the variable.
In the second brackets of eq. (12) the summations run

independently over the sets (v“[1ép§m} and {{u

>‘,u)\,)|1i,>.<.\'§1}_

Hence, this term may be rewritten as follows:

E LL (Gvﬁu, - GEX. ) +
(vu} (iuA.uA.)}
ACAT
teha:, o— aet .
vV vV

[uA} {(vu,vyi}}

plp’

Recently, it has been shown [6] that the expressions in the
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round brackets above can be transformed as follows
v v
= 6 = tip ¥ 15)
G Guu GGuu Guvcu v '’ (
Thus, one obtains for the second brackets of eq. (12) the

following equality:
v v u _ u =
2t((EG ) (LG, -) - GLEG, - + (LG (LG ) GLG,, -] (14b)

+ 2 EE L G G ...

. uv uv
uvv

=% EE‘E, CuvCu‘v
Because the r.h.s. of eq. (14b) represents a sum of bilinear terms
which might be positive or negative for an arbitrary value of x it
is not possible to conclude whether this term will be positive or
negative.

The third brackets of eq. (12) may be rewritten as

follows:

((E i (Cyu-Cyy ~ GGuu‘,vv’)'
A

NN pip’

A.l] {lvu,vu,ll

The round brackets above cannot be expressed as a simple equality
1s available. Nevertheless, some kind of transformation can be
performed by means of the Jacobi theorem [7]. Let A denote the
secular determinant of the graph G, then one has the following

identities



A =G
= - = . s = . = G
Au,u Au ,u Guu ' Av,v v,V v
B m N oz =G . s o= Gl s
uv,u’v u'v’,uv uu’,vv uv’,u’v
= i - =G G i
uv’ ,u’v u’v,uv uu’,vv uv,u’v
where Aj,k and Ajj',kk' denote A with rows j (and j“>j) and

columns k (and k°>k) struck out; with the exception of & itself,
they are all unsymmetric minors of A. It is worthwile noting that

in the generation of the polynomials, e.g. Guu., the direction of

any path removed, Puu” plays no role and remains undetermined. In
contrast to that, due to its lack on symmetry, in Au e all the

paths P . E.(Puu,) go from the vertex u” to the vertex u [8]. In

general, all the paths removed in the course of the expansion of a
minor start (end) at one of those vertices which correspond to the

struck out columns (rows). This fact explains the difference

between A o - and A __ . . as notated abaove.
uv,u’v uv’,u’v

From the Jacobi theorem the following relations are

derived [7]:

# A P .
w,u’ v, v uv,u’v u,v'-v,u’” ' (16a)

By by, v BBy, T By v Bvy (e

which may be expressed in terms of the polynomials as follows:
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= - 5 E £ .G . 16a’)
Guu'c'vv‘ G(Guu'.vv' Guv Ju v) Cuv-Cu-v ¢ (

= - = PR 16b”
Guu'c'vv’ G(Guu',vv' Guv,u’v') Gquu v ( )

The addition of eq. (16a’) and (16b") results in

26,8y Wy g =
= ByyCiyres * Cuv Surv ~ G(Guv,u'v' * Guv‘,u'v) : o
The 1.h.s. of eq. (17) represents one contribution to the third

brackets of eq. (12); by the substitution of eq. (17) one obtains:

2 -
4¢° (L6, .1 (EG,,.) = GEG . (-] =

2
=HR2EEE EBIL 6.8 TG G ) & (14c)
i gl uv u’v uv’Tu’v

- 2t2£ L EL G(c

u<u’ v<v’

T ¢ " - ) =
uv,u’v uv’,u’v

=¢"LEL EE 6,6+ - €EL LL 6

o
uzu’ vEv uzu’ wvEv’ dvgd™

Since the r h.s. of eq. (14c) represents a sum of bilinear terms
which might be positive or negative for an arbitrary value of x,
it is impossible to conclude wether this term will be positive or
negative.

Collecting the intermediate results, eqs. (14a-c), and

inserting them in eq. (12) one finally obtains:



= g =

af _ae _ 2
¢ - = HI(ELG, + tEL E G G . + tE E'E‘Guvcu,v +
uv uv#vy uzu v
+t2}:£ E & B Oufn® = t2[E EE GB . e 1 (18)
uzu’ vav’ M uzu’ viv’ L

To attain eq. (3), i.e. (Cdf—ca

£ 2 0, one has to require
that the factor (HJ) as well as the expression in the curled
brackets be positive in the complete range of the variable because
it is very unlikely that both factors change their sign simultane-
ously; such a behavicur would demand that both factors have
exactly the same zeros.
The requirement

HT 2 O (19a)
is realized simply if H and J are either isomorphous or cospectral
graphs; then one would have

HT = H® > 0 . (19b)
The connection of H with the vertices a and b and the one of J
with e and f plays no role with regard to eq. (18), i.e. no
bijective mapping of the edges connecting H with a(b) onto the
edges connecting J with e(f) is required; but, of course, both
graphs as well as their embedding into C must exhibit that
symmetry which is necessary for effecting the symmetry operat:ion
according to eq. (4-6). If the graph of the terminal subunits, A,
is connected, H and J may be disconnected or even empty graphs; in
case that H and J are disconnected, due to the symmetry P, both
graphs consist of a pair of isomorphous components and, hence,

both polynomials H and J are squares satisfying (19%a).

For different graphs H and J, the requirement of eq. (19a)
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may also be realized if H and J represent either two even- or two
odd-membered Hiickel- or Mébius-cycles. Once again, the connection
of H with the vertices a and b and the one of J with e and f plays
no role with regard to eq. (18).

From the terms within the curled brackets of eq. (16) only
the first term is not multiplied by any power of the dis-
crimination parameter t [1,9], hence, in the case of acyclic poly-
nomials (t=0) it will be the remaining term.

The first term represents a sum of squares and, hence,

will be positive:

tre? > o0 . (20)
uv uv

this allows one to state:

Result 1: If T and S denote the acyclic polynomials of
topologically related isomers constructed within scheme 1, the
terminal subunits A and B are isomorphic, and the central
molety C 1s in agreement with the general structure shown in
figure 1, where H and J represent either a) isomorphic or b)
cospectral or ¢) disconnected graphs which consist of pairs of
lsamorphic components or d) two even (odd) membered Hickel-
(Mébius-)cycles, then (T-5) 2 0 will hold in the complete

range of the variable.

But in the case of characteristic polynomials the value
t=1 has to be set [1,9] and all the terms of the curled brackets

in eq. (18) have to be considered.
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Obviously, the first four terms form a square, namely

2
EE6. *EEE & .G . *# EEL EG
uv Y uvey” VWY uzu’v

(21)

+LL LEG G, ,=([Cic ]° >0
” uv u'v uv
uru’ Vv uv

But in this case the last term of eq. (18) remains and prevents a
conclusion as to whether the expression in the curled brackets of
eg. (18) will be positive or not. To the best of our knowledge
there is no way to transform the last terms of eqg. (18) into any
satisfactory form.

For what follows it is necessary to recall the origin of
this troublesome term. Tracing them back to eq. (12), it is
evident that it arises from the the bicyclic contributions to
(Caf—cae). If the general structure of C as shown in Figure 1 is
altered such that no bicyclic contribution at all can be generated

in the course of the partitioning of Caf

and Cae, respectively,
then these difficulties would be eliminated at once. This is
performed simply if one demands that one of the vertex sets {UA}
and va) has the cardinality 1. With regard to egs. (12), (18),
and (21) we choose I{uA}|=1. In this case, with regard to egs.
{19) and (21), eq. (2) will finally take the following form

25 o lrie 1% 59 . (22)
uv

v

Having derived eq. (22) one may state (see also Figure 2):
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. Result 2: Let 5 and T denote the characteristic poly-
numials of the topologically related isomers S and T accarding
to Scheme 1; their differerence will be positive in the
cumplete range of the variable,

(r-s) > o,
1t
{1} the terminal subunits, A and B, are isomorphic;
{2} the central subunit €, 1s agreement in principle with the
general structure shown in Figure 1 and satisfies the following
conditions:
(2.1) € exhiblits a symmetry such that the symmetry operator P,
defined by Pa=b, Pb=a, Pe=f, Pf=e, and eqs. (4)-(6) belongs to
the automorphism group of C;
(2.2) the subgraphs H and J are either a) 1isomorphic or b} co-
spectral or c) disconnected or d) two even (odd) membered
Hickel-(Mdbius)-cycles;

(2.3) at least one of the vertex sets (uA) and (vu) has the

cardinality |.

This alteration of the structure shown in Figure 1 is

illustrated by Figure 2.
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G v,

Figure 2, illustrating result 2: In the case of this

: & 2
structure one obtains (Cdf—Cle) = [2(x4-x3—4x r4x)]2
a2 (x-1) 2 (x+2) 2 (x-2)2 2 0.

particular

Before this section is closed a brief remark should be

made about the non-equivalence of the vertex sets {u

A

and {v
H

displayed in egs. (12), (18), and (21): According to eq. (7) a

vertex uh(vp) can be removed from G only together with its

adjacent vertex b(f). lence, vertices of the set (ukl

are

i R : af ae
from G in the partitioning of C as well as c®® because both

)

i3

removed

graphs contain the vertex b; in contrast to this, vertices of the

set {vp} are removed from G only in the partitioning of c**

£

because the vertex f belongs to ¢®® put not to ¢**. on the other
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hand, also according to eq. (7), a vertex rA(zu) can be removed
from F only together with its adjacent vertex a(e). Because the

: 3 i f
vertex a is not present either in el

or in Cae‘ no vertex rA can
actually be removed in the partitioning of these graphs. But the
vertices of the set (zpl will be removed from F in the parti-

tioning of CAE; this result is then expressed in terms of

Gf(lvu}) according to eqg. (11a). Thus, the factors Gg‘(uk}) are
generated directly by removing uA's in the partitioning of either
Car or Cde; in contrast to that, the factors Gf(lvu}) are

generated either by removing v“ from G in the partitioning of ca®
or by removing zu from F in the partitioning of Caf and the

f({Vul)'

subsequent transformation of the result into terms of G As

a consequence of the procedures described, for example the term

f, but the term cc“V in

G"cY is obtained in the partitioning of ok
the partitioning of ¢re,
Finally it should be mentioned that the introduction of an

additional symmetry operator, Q, defined by

which was necessary in another case [10] contradicts the condition

(2.3) if both sets do not have cardinality 1, I{uA)l=i{v“ll=1.

3. Structure IT

The structure I treated in the preceding section has been
constructed on the basic assumption that the vertices {a,b,e,f)l €
C to which the terminal moieties are linked (see Scheme 1) form a

cut set. This assumption is dropped now. On the contrary, each



pair of adjacent subunits, F, G, H, and J, which is linked in C
via one of the vertices a, b, e, or f, is linked by an additional
edgye. The resulting structure II is shown in Figure 3. Its
symmetry is assumed such that egs. (1) and (4) are satisfied.
Furthermore, for simplicity it is assumed that the vertices a, b,

e, and f have the degree 2 in C.

a e
-0 r z O+

n O
< O

—0 —~

=0 <

O u v O
b

Figure 3: General Structure II

In contrast to the previous section where D = Cabcf has

represented a disconnected graph consisting of the four components

F, G, H, and J, here D = Cabef is a connected graph in which the

subunits F and H, H and G, G and J, and finally J and F are linked
by one edge respectively; we will refer briefly to these four

edges by the term additional linking edges.

Besides some cycles which are fully localized in onec of
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the subunits there is here in D a set of other cycles to which the
additional linking edges belong and which are, hence, fully
delocalized over all the subunits, i.e. such a cycle consists of
the four additional linking edges and four paths, from each
subunit one path.

In Cdf(cae), due to the presence of the vertices b and e
(b and f) there are additional cycles to which at least one of
these vertices belongs. They are either fully or incompletely
delocalized as may be seen from Figure 3. There are 9 different
types of such cycles; in Figure 4 the numbers 1 to 9 are assigned
to them. The types 1 and 2 are feasible in caf as well as in cae;
the types 3-5 can only occur in Cdf, the types 6-9 only in cE,
The assignment of the types of cycles will also be used in the
concise notation of the polynomials. Thus, D1 will denote the sum

of all polynomials associated with those partial graphs which are

generated from Crlf or c?¢ by the removal of one cycle of type 1

and the vertex e or f, respectively. Similarly, D1 4(D1 B) denotes
T i

the sum of bicyclic contributions corresponding to the removal of
af

one cycle of type 1 and one cycle of type 4(8) from C (Cde); etc.

Applying eq. (7) twice to Ca‘f and cae' respectively, one
obtains:
Cuf =
= x%p -xp® - xp" - 2txD, - 2txD,
- x0¥ D% 4 0" 4 2eDY 4 2tpf (23)
- xp% + p%% 4 pYZ 4 2tp% + 2t}
- 2exb, + 2tDt + 2¢pY + 4e2p
4 4 1,4

Nt oot

+ 2eDY

5 5

= 2tXD5 + 2tD - 2t03
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Figure 4: The types of cycles which can be constructed in ' (a) and in C%€ (b},
respectively, but not in D=Cab6f. The heavy lines indicates the edges, the
broken heavy lines the paths of which these cycles consist. For the composition

of the cycles of type 6 one may alternatively use either the paths Puv and Pu,v

or the paths Puv. and pu'v: in D, all these paths have to be considered.

6
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and

= x“D - xD- - xDY - 2txD, - 2txD,

1
- x0¥ + 0 + p"Y + 2eD] + 2tD) (24)

w tw uw

- xo¥ + p™ + D" + 2tDY

1

t u 2
= thDB + 2DB + 2tDB + 4t D1,a

£ u
% 2txD9 + 2th + 2tD9 = 2tD6 2tD

2
w
+ 2tD2

7

The terms of the first row of egs. (23) and (24) are

identical; hence, they cancel each other in (Caf—cae

). But there
are more terms which equal each other due to the presumed

symmetry, namely:

these are the first terms in the other rows of egs. (23) and (24).

Taking all these equalities into account, one obtains

caf _ cae _
= »[Dtv + ptY - pty . ptZ 4 pUV 4 pu¥w _ puy _ Duz]
- \ w o .y _ .z v wo_ .y _ Lz
Zt((D1 + D1 D1 D1] + [02 + 02 D3 02] + (25)
t u & u ) = u £ u
¥ L - - - o =
D, [D4 + D, Dg DB] [D5 + D Dg Dyl
2
= DG = DT} + 4t {D1,4 = 01,8}

Each graph which is associated with one of the terms composing the

r.h.s. of eq. (25) contains at least one of the additional linking
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edges. Thus, in order to express eq. (25) in terms of the poly-
nomials associated with the subunits F, G, H, and J, the
additional linking edges must be removed.
The notation of the eight terms composing the first

B

brackets of eqg. (25) may be generalized to D" where a & (t,u} and

8 € (v,w,y,2). The removal of all the additional linking edges

from one of these terms results in

p*® = (rong - F% cua¥ + FZ GY mwa" ¥
= EaF Ha® + B° @  m- @
t

= FEr BT+ E cu® J¥

- ¥ 6H® 3 + FG H- g

+ F~ 67 H J (26)

the superscripts of outside the brackets indicate that the indices
a and B have to be added in the proper way to each term within the
brackets; in the case where af stands for tv, for instance the

v..t

first and last term are altered to FG H J and

v k o 2
ZtFr'z’Gu‘v'Hs't‘Jw'y" respectively.
In order to simplify the notation for the cyclic

contribution in eq. (26) the following abbreviation will be used
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«f . pof 27)
EZTUN s‘t’Jw’y’] D1O (
On inspection one recognizes that terms of eq. (26) have
2,4,6,8 and 10 different indices (used as superscripts),
respectively. Thus, with regard to eq. (26) one may express the

first brackets of eq. (25) as follows

5
[1/(25)] = -2t £ p%*F + ¢ o2V . (28)
10 o

ap =1
where 2v indicates the number of indices which form the
superscript and ozv denotes the sum of all such (non-cyclic) terms
(the signs have to be in accord with egs. (25) and (26), of
course). It should be noted, that the indices a and B must be
contained in each supercript; with regard to eq. (25) they

influence the resulting sign of the term as follows:

In the next steps the sums 02, 04, etc. are considered.

Obviously, 02 is generated by [FGHJ]“B, foe.

0% = ¢ [FoHI]%P
ap

Thus, one obtains:

0% = - reVuts - ron®s¥ + ForyY + rlcuts
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- r6¢"Vas - re"ma¥ + FeYna¥ + reUni®

Taking into account the following equalities

2

which are caused by the symmetry as expressed in eqs. (4-6), O

results with regard to eg. (13) in

2

0% = ui(c¥cY-ac"Y) = noG’

uv
ro— q . 3
In a similar manner, O  is given by

0% = T [-F% oua¥ -rc¥ ma¥ -rcY¥ ut
af

and consists of 4:8 = 32 individual terms;

(29a)

3-rF on® 3)°P

taking into account the

equalities caused by symmetry the number of individual terms is

reduced to 16 and 04 takes the following intermediate form

P g =g T -8 e

+

e¥eY =™ I - ¥y -
[GUGVV % GVGUV . GV GUV o GGUVV

EGuGu \4 v_.uu

To the brackets of the first two terms eq.

w3y -

+ 66" - g% ¢ - ge"M Vint s

(13) may be applied;

recently, the following equality has been derived [6]:
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Gkclm " Glckm . Gmle B Glem . ZleG:1 E (30)

which may be applied to the brackets of the last two terms. Thus,

04 results in

0% = 62, (¥ bt Yy ¢ 6% uaYY -a¥Y ) - (29b)
u v uv
voow [ i
ZGUVGUVHJ ZGquuvH J

The sum 06 is originally composed of 48 individual texrms;
by the presumed symmetry their number is reduced to 40. They may
be condensed to 6 terms to which the eqs. (13), (30) and the

following one (also recently derived [6]):

Gkclmn + clckmn . Gmckln _ Gncklm

- gklgmn | ckmeln o cknolmo o cklmn (31

_ m .n mn
= 2(Gp3Gpy *+ GOy Gyy)

may be applied. Thus, one finally obtains

0% = Gﬁ,v,(Ht L8 LA L, L ST
. v’ £ 58 Eo® u’ ot ww_.y'w
+ 26,. GY. (H B e & 20 el a0 3y . (29¢)
v', 2 W'y’ u’ .2 s°t’
+ (6y )% BI + (G H F 4
206 67 ¢ g 64 Vut a¥
uv uv uv uwv

In the case of 08 the originally 32 individual terms are
reduced to 16 by means of the symmetry presumed; they may be
contracted to four terms. After the application of egs. (13) and

(30) one obtains



8 _ v 2. Tt s Wy U o 2SR ot ow 294
07 = -(G ., )7 (H n g (G - (7 J o) (29
26V U v Hr Y L oagt g VT t P
uv uv uv uv

o

Finally, 010 consists originally of & terms of which 6
terms are pairwise equal due to the symmetry presumed. Applying

eq. (13) one obtains
10 L IOk Rl gk

o] = (Guv })7H J 5 (29e)

In order to finish the transformation of the first
brackets of eg. (25) one has to consider its cyclic term
-
i T 1 ) S T : O SO -
af 10 «p Yrz-uwv st wy
which originally consists of 8 individual terms; 6 of these cancel
each other due to the symmetry presumed. Without transforming the

remaining terms [11] one obtains

2B u \ ) uv
agn70 Gl <« Gu_v,cu.v.)ﬂs,t,Jw,y, i (29f)

Collecting all the partial results, eqgs. (2%9a-f), the

first brackets of eq. (25) results in

_ [DLU G th . Dty . th v DYV ¢ pU¥ Uy DUZ] 5

2 2 st

=2 HT + G2 L (H 2
uv uv

. G ey
u v
2 571

PR R

26 6t pty-20 6V HY +6 Ll Sy g g

uv uv uv uv u‘\ll'“'1 )
_ v’ LI IR T u’ b yTw ww
ZGu'vGu'v(H H )J 2GUV.GUV,H (7 J ) <+ (32)
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vi,2 wy’ i~ 2.8 u v’ wv' ot W
(Guv) . i3 (Guu] o & 2(Guucuv ¥ Guvcuv LR il

+

LGRS e 2.5 YW W

+ (G, )T HT R )T + (G- ) H (J J° )

CoagV U VIRt MY L gt gt Vs L L AP )ZHS LR LIS A
uv uv uv-uv uv

u v uv
E Zt(Gu'v'Gu'v' Gu'v'Gu’v’)Hs't'Jw'y’

Assuming that H and J are isomorphic such that the

following equalities hold

(33)

o

I
[

<

b+
it
g
=
il
o

the r.h.s. of eq. (32) takes the following form:

62 u2 + (62 .+c2. )u(m
u v

* T - S
uv uv H

) - 2G_ (G _+G . )H
uv uv u v

2 - L o S v’ u’ o SV SETE
H H ) Z(Gu.vGu.v+Guv.Guv.)H (H -H ¢

v 2% 6V v 62V ymt )2 (34)

u 2 v ,2 s’
+ +
[(Guv) (Guv) juH uv uv uv uv

u’ .2 LR T - e e T
+ LG, -)° # (6,..)"1H (H® "-H )

_ 2(Gu'ﬂav')':'u'mr'l_{1:’]_Is‘t‘ " (Gu'v’)z(ﬂs‘t‘ 2
uv uv’ uv uv

|
N
ot
~
2]

(=

<
7]

!

@
«Q
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obviously, these terms cannot be contracted to a square, even if G

were assumed to be symmetric such that
6 BB - G0 B8as Ciw ™ 8 s (35)

But no final conclusion can be drawn concerning this without
considering the cyclic contributions in eq. (25).

For the cyclic contributions in eq. (25) which are
generated by the removal of the cycles of type 1 (see Figure 4),

one obtains by neglecting of eq. (33) and (35):

v W _ b4 = z =
[D1 + D1 D1 D1]
- - w‘w -
= Gquu'th'tJ G V’Gu'v'Ht‘tJ
= G B B G, IR A . e BT ¥ (36)
uv u’v uv u’ v t't uv’ Tu'v et

~ ’ wy’ u’ 5T _wWww

Gquu v t tJ * Gquu th tJ &+ Guv‘Gu'v’Ht’tJ +

u’v w’ u’ 57 W'y

+ (Guv Gu'v + Gquu V)Ht tJ Guv"Gu'v'Ht'tJ

R GE e g
" Cuv Surfeed
In order to achieve this result the equalities caused by the
symmetry operator P have been taken into account and eq. (15) as
well as the following equations derived recently [6]
k1l 1.k _ 1
G Gem G Glm = leka i (37)
kn k. .n n.k kn - ) ~n
GGy + GGy - GGy - GOl = Gy Gy + Gy Oy (38)

kl n 1n_k 1. kn _ In n 1

Mgy T 0 Oy = 6 Gy = T By = GOy ¥ UyCig e
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have been applied.
In a very similar manner the following intermediate

results are obtained:

P VT (e S
[D,+D5-D5 DQ] (40)
v v u® ar u’v : o .
= (Guv,b " Guv'Gu'v')Hs’th'y' (Guv'Gu'v' GuV'Gu'v')Hs'th’y”
o v’ Yoo
Dy = Gy Cu-vPs ¢y ¥ Gy Gu‘vHs’th'y (41)
2 Jel e o S £ 6¥ ev wh g¥ .
uv’ - u'v st w'y uv’ u'v st w'y
u b [E
[D, + Dy - Dg - Dgl = (42)
= G .HJ ¢y 6 .ma¥ . - (¢% 6 .+ c" )mt +
uv - uv wWW uv - uv wwW uv uv uv uv WW
v’ _u u’'v £y’ u’ £t v st
+ “ = ., - "
(Gnv uv Guv Guv ) wa & Gvu H wa t G Gvu'H wa i
0™ e (b £/ S 1 st ¢’ T R o S e T
+ . 3 4
Gquuv B wa Guv Guv il wa b (H H )wa’ ‘
t u o u u u
+ - - = " ~G — Pl SR
[DS DS D9 D9] (Gu vu'v u vGu v )Hs t Jw Yy (43)
v’ _u uv” W’
= . i UG 5 g 2.3
(Gu UGU v u'vu'v )Hs t Jwy '
~ " &
D = GG - Hoo W Jo . G GyrgHpry Ty i (44)
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1
= - el B a5
b, = Gquu’v'HS'tJy'w GuvCuv-lls tJy W (43
BT T . ne,
uvu'v sty w uv TuvT sty w

Finally the bicyclic contributions of eq. (25) are given

as follows:

04 470q,21 =

(G G v'_GGuu'

uu’ v
u’ a’ s
JG oG 4 4 T 16
(Guu (vv G C'uu A )Ht t]w W (

v P v
uu-© = Guu’,vv’)HL'th'w E2
) v o u’ u'v’ 5 ¥
+ (GUU'GVV' G Guu',vv')HL’th'w

- (G

v’

16
1) has

With eq. (25) an intermediate result for (Caf-ﬂ
been given in the case where C agrees with the structure shown in
Figure 3. The r.h.s. of eg. (25) is the sum of the r.h.s. of the
eqs. (32), (36), and (40)-(46). Several terms of this sum may bhe
contracted Lf eq. (33) and related equalities, also generated by
the isomorphism of H and J, are taken inbko consideration. Bul as
very careful tLreatment of the resulting expression has shown that
a quadratic form for (Cdf—cae) cannot be achieved by any means.
This situation is changed neither by the assumption that G be
symmetric in accord to eq. (35%5) nor by taking t = 0 which would
restrict the consideration to acyclic polynomials only. Thus, one

has to state:

)

]

a
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Result 3: I+ a palr of topelogically related 1somers
1s constyucted according to Scheme 1 and the structure of the
central subunit, €, 1s represented as in Figure 3, the
appearance of Ilnversions within the TEMO pattern of these
Lsomers cdannot be excluded

Certainly the numerous cyclic centributions to (Caf-Cae)
make it more difficult to achieve a quadratic form; but the im-
possibility of transforming even the r.h.s. of eq. (32) into a
square indicates that the difficulties do not arise only from the

cyclic contributions.

1. Steucturye. TIT .
In order to achieve a quadratic form, in the case of
structure I it was essential to reduce the cardinality of the

vertex set (VH) to 1. Such a reduction has the effect that the

af ae,

generation of cycles localized in F(G) is prevented when ¢©7(Q
is partitioned at the vertex e(f). This observation suggests the
reduction of the number of additional linking edges. This is im-

plemented in Structure TII as shown by Figure 5.



n O
< O

=) ~+
—0 £

Figure 5: General Structure III

The treatment of Structure IIT does not differ in
principle from that of Structure II; it is noticeably simpler and

involves only a few terms. Therefore, the final result only is

given:
(Caf_cae) =
=62 H + 6% (1% PP Yy-26 6% T+ (cY )%uS b4 (47)
uv u v uv uv uv
u’ 57
+ 26(G G . Hypr - Go Gue Ho )13

Obviously, this expression cannot be transformed directly

into a sequare; in order to make this feasible some requirements
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- T
must be satisfied, for instance (HJ) as well as [H -H )J] must

be squares. Obviously this will be the case only if all the

3 E7E 3
different factors, H, (HS t—H ), and J, are squares on their

own. This would be realized for J if its graph is either an even
membered Mobius cycle or a disconnected graph which consists of a

- o ~
pair of isamorvhic components, say J = J UJ, T =J. In the case of H
the requirement that H and (u® t . Ht t) are squares on their own
can be realized only if the graph H consists of a pair isomorphic

_ ~ o~ ‘ ’
components, H = H UH, H = H, where H be connected with F, i.e.

€ H, and ﬁ with G, i.e. t,t” € H. Under this conditions

5,5
(HS t—Ht t) would indeed be a square:
st Bt _ syt ettt | w2
H H = H HH = Ht't
e ~E" i ~
because H® = Ht and H = H. After having treated the other terms

of eq. (47) in an analogous manner one obtains

af _a A < ook 2 >
c c ([GuvH GuvH + Gu,th,t]J) = 0. (48)

e_

Unfortunately due to the assumption that H and J are
disconnected, Structure ITI loses an essential characteristic,
namely its connectivity. As a consequence, the structure corres-
ponding to eq. (48) cannot be identified with Structure IIT but
with the one shown in Figure 6. In this Structure IIIa H and ﬁ are
considered as parts of F and G, respectively, hence, they are not
indicated in Figure 6. An essential feature of Structure IIIa is
that the vertices e and f are connected by only one edge with F

and G, respectively. In the case of Structure IIIa eq. (i&) takes



the following simple form

af ae

o 2
c = € = {J LG __}
u u

(487)
v

The results of this section may be summarized as follows:

Result 4: If a pailr of topologically related lsomers

is constructed according to Scheme 1 and the central subunit,
C, exhibits a structure which agrees with the one shown in
Figure 5, the non-appearance of linversions within the TEMO

pattern cannot be concluded but if C agrees with the structure

shown in Figure & TEMO without inversions result.

At F /"

a/lor e /Loy,
—O Iy Z O —O Y4
~O U4 VO Wy

b \[Ou: f \c')wz‘w
NUL G hgwn.l

Figure 6: General structure IIIa for the central
subunit C (the same result, eq. (48), is obtained
if the vertices a and b and/or e and f are
connected by an edge)

5. Structures IV and V

The result of the last section seems to indicate that a
definite conclusion for TEMO without inversions is precluded, if
in C the subunits F, G, H, and J are not only connected via the
vertices a, b, e, and f, but there are additional connections
either between F and G or between H and J. In order to prove these

pussibilities the Structures IV and V, depicted in Figure 7,are
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taken into consideration; in IV the subunits F and G, in V the
subunits H and J are connected via an additional subunit, K. For
convenience it is assumed that the vertices a, b, e, and f are of
degree 2 in C.
We now consider the structure IV. Due to the symmetry of
C, as expressed by eqs. (4-6), in case of IV there are the

following relations in addition to egs. (4)-(6):
PK = K, Pj =m, Pk =1, Pl = k, Pm = j. (49)

For the sake of simplicity let L denote that partial graph

of C which consists of F, G, K and the edges which connect them

L = FUGURU{{3k}, {Im}}. (50)

f

After the partition of Ca and Cae at the vertices b, e,

and f, respectively, by means of eq. (7) one obtains

af _ae

(c -C uv

y = RI[EEZ =YYy (51)

Assuming HJ = [h(x)]2 as in the case of structure I, the
conclusion as to whether (Caf—cae) 2 0 depends only on (Luz—Luv
2 0. Thus, the original problem concerning C is converted into a

)

similar one which concerns L; the only difference is: the
neighbourhoods of the vertices a, b, e, and f in C are of course
arbitrary but defined while the neighbourhoods of u, v, and z in L

are undefined.



Z5. <

*A pue

Q=) A N O=
om
[ Wwo- 1 4 O
4>

-0 Z 4 O

AI Sa3In3jonijs [eILuan

fL PInLTg

Al

-0 A

D)

OE

n O

om




- 206 -

Having removed the edges {jk} and (lm}) from the partial
graphs of I and using the equalities of certain polynomials of F,

G, and K due to the symmetry presumed one obtains

Wy - ge? - 2 kG 6™ 4 xKl(gM )2 (52)
uv uv uv uv

This would be a perfect square if K, Kk, and Kkl would satisfy the

condition

K=o, K" =af, k'" = g7, (53)

where a and B denote appropriate real polynomials. This demand is
satisfied in a trivial manner if K would consist of two isomorphic
components; such a situation has been discussed above in
connection with eq. (47). But in this case, F and G would not be
connected via K, i.e. Structure IV would have lost an essential
characteristic and would have been converted into a variant of
Structure I.

But eq. (53) can be satisfied also in a non-trivial manner
if for K an even membered Mébius cycle is assumed, in which the
vertices k and 1 are located at opposite positions. This may be
proved as follows:

(1) The zeros of a 2n-membered MSbius cycle are given (121 by

x, = 2 cos(2k-1)(n/2n), 1 £ « &

K 21’1;

they are pairwise degenerate, hence,
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n
K = { w [x-2cos(2k-1)(n/2n)]}
k=1

2

(2) Kkl consists of two isomorphic path graphs, Pn—1’ which

consists of (n-1) vertices each. The zeros of Pn—1 are

2cos(An/n), 1 s A S (n=1).
3 k1
Due to the relation of the graphs, K = Pn_1UFnﬁ1,
of Pnf1 is a double root of Kkl; hence:
n-1
K1 = (1 [x-2cos(An/n)1)2.
A=1
(3) The graphs Kk = Kl are isomorphic with P2n—1' The zeros of
P2n—1 are

([N

nA

xu = 2cos(pw/2n), 1 1 (2n-1).

each zero

Within this set the index uy takes n times an even value and an

odd value (n-1) times which may be described by u = 2\,

& (n=-1) and p = 2k-1, 1 g K s n, respectively. Thus the

polynomials Kk = Kl = P2n_1 may be expressed as follows:

5 n n-1
K" = { T [x-2cos(2k=-1)(r/2n)]}{ T [x-2cos(Aw/n)]}.
k=1 A=1

Obviously, if K represents an even membered Mobius cycle, eq.

is satisfied; then (Luz_Luv) 2 0 and consequently under the
ae >

condition HJ = [h(x)]2 there is also (Caf—C ) = 0. All this

together allows one to state:

=

A

{53}



Results §5: For a palr of topologically related isomers
constructed within Scheme 1 a TEMO pattern without inversion
will result, i1f A and 8 are isomorphic and the central subunit
¢ agrees with Structure IV shown 1n Figure 7 wherein H and I
are either a) isomorphic or b) cospectral or c) two even (odd)
membered Huckel-(Mobius)-cycles and K represents an even

membered Mobius cycle in which k and 1 are located at opposite

positions.

One may suppose that by modifying even membered Mobius
cycles a series of graphs K could be generated which satisfy eq.
(53). No attempts have been made in this direction because there
is some doubt that such structures could really be used in the
construction of pairs of topologically related isomers which have
a thermodynamic stability such that they may be also synthesized
and investigated experimentally.

We now turn to Structure V. Here, in contrast to eq. (50),

the symmetry of C as expressed by eqs. (4)-(6) requires

PK = K, Py = j, Pk = k, PL =1, Pm = m. (54)

Analogous to L the inner part of Structure V will be denoted by M

and is defined as follows:

M = HUJUK VUL (ik}, (1m)) . (55)

b . £ i
The partitioning of c®" and c®*® at the vertices b, e, and
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f, respectively, by means of eq. (7) results in

af ae 2
- & : 6
(C c ) M Guv' (56)
Obviously, (Caf = Cae) 2 O depends on M 2 0.

After the removal of the edges {jk} and {(1m} the
polynomial M is expressed as follows

M = HIK - HIJRX - Ho"k! & mIo"kXT. (57)

In order to transform the r.h.s. of eq. (57) into a square, K must
satisfy eq. (53); further, H and J need to agree with

H=J, ) =™
This is realized simply if H and J are isomorphic; the assumption
of cospectrality 1s insufficient here.

Under these conditions with regard to eg. (53) M takes the
form

M= (aH - g2 2 0.

Thus, in case of Structure V one may state:

Results 6: For a pair of topologically related isamers
constructed within Scheme 1 a TEMO pattern without inversions
will result, iIf A and B are isomorphlic and the central subunit

C agrees with Structure V shown in Figure 7 wherein H and J
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are isomorphic and K represents an even membered Mobius cycle

in which k and 1 are located at opposite positions.

The results 5 and 6 differs only slightly in the require-

ments concerning H and J.

It should be noted, that egs. (51) and (56) may be applied

to any graphs L and M, respectively, provided that they exhibit

the symmetry presumed.

6. Some concrete structures for C

In the course of the research reported here some concrete
structures of C have been considered to clear up or to prove some
details in gquestion. Apart from VI and VII (see Figure 8) they
might be part of some polycyclic aromatic hydrocarbons. All these
examples are presented in Table 1 which is completed by incor-

porating some earlier results [2].

a € a e

({})k (c}'}k (%)k (%}k

bé)—--(—o—)-l--é f bo—--(-o—)j-—<'>—--(—-o—)-l-—$—--(—o—)-rh-o f

Vi Vil

Figure B8: Structure VI and VII.
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The examples 1 and 15-17 represent realisations of
Structure I with H and J isomorphic and empty, respectively, while
the examples 8, 12, and 13 verify Structure IV for H and J
isomorphic (8,12) and different (13). As is to be expected,

c®f_c3®%) 2 5 i5 realized in case of 1, 8, 12, and 15-17.

(
With the examples 3, 8, and 11-14 all the possible
distributions of the vertices a, b, e, and f upon the secondary
carbon atoms of the skeleton of naphthalene are realized. Due to
the symmetry of C expressed by egs. (4)-(6) a and b as well as e
and f must occupy equivalent positions. Disregarding the trivalent
vertices of the naphthalene skeleton there are two classes of
equivalent vertices assigned by o and B positions in chemistry (a
vertex in o position is adjacent to a trivalent vertex). The pairs
(a,b) and (e,f) may belong either to the same or to different
equivalence classes; further, the vertices of a pair may be
members either of the same or different six-membered rings. In
this manner the six combinations listed above are generated. As

Caf_Cae) takes different expressions in the

seen from the Table, (
different cases. Such behaviour should be anticipated as, for
instance, the application of eq. (51) to 8, 12, and 13 shows.

The Table contains some series of examples within which
(Caficae) does not alter; such series are: (1,2), (3-7), (8-10),
(15-17), (18,19), and (20,21). In each member of a given series a
certain "kernel structure” is present which seems to determine the
analytical form of (Caf—Cae). Obviously, the kernel structure of
1(=VI) is a (2k+4) membered cycle in which a and e as well as b

and f are adjacent and a and b as well as e and £ are separated by

k vertices. 1 is generated from its kernel structure by replacing
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the edges (ae) and (bf} by paths of the length (1+1). From the
cycle 1(=VI) the example 2(=VII) is produced by transporting
simultaneously the vertices which are related by the symmetry
supposed (i.e.: {a,b)} and {e,f}, respectively) along paths of the
length (j+1) and (m+1), respectively, which originate from those
vertices of the cycle 1 which were the original locations of the
vertices (a,b) and {e,f}, respectively; j and m may be any natural
number or zero. It seems that the members of the other series are
related in a similar manner; as the examples 6 and 7 show, beside
the route described above for the generation of 2 from 1, several
modes for the derivation of structures from a given kernel
structure seem to exist. Although all these points seem to reflect
an interesting problem, no further investigation have been carried
out.

The examples 18-21 may be derived from 15 and 16 by
connecting the two components of C in a different manner; due to

this interference the behaviour with regard to TEMO is changed.

1. Conclusiens

If a pair of topologically related isomers is constructed
according to Scheme 1 (this means: the terminal moieties A and B
are isomorphic and the central moiety C is consistent either with
Structure I, IV or V, satisfying the conditions listed in the
Results 1, 5, and 6, respectively) then the union of the
eigenvalue spectra of these isomers will present a perfect TEMO
pattern without inversions.

The interest in TEMO patterns without inversions is quite

natural: Because TEMC results solely from pure topology [13] it
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musi be classified as a formalism from which, a priori, one does
not know to what extent it is realized in nature. Fortunately,
photo electron (PE) spectroscopy vffers a possibility to prove the
validity of the TEMO theorem experimentically. But this proof does
not consist of the "topological predictions” of ionization
potentials with any accuracy, but rather it consists of the
prediction of the relative locations of the ionization potentials
of the topologically related isomers. If TEMO without inversions
is anticipated but the union of the PE spectra of the isomers
exhibits some inversions, then these inversions indicate that
among all the factors which determine the location of the
lonization potentials the topological one does not dominate (it is
interesting to see the reasons for that [14]). Because such a
conclusion could not be drawn in the case where inversiocns are not
definitely excluded from the TEMO pattern, the interest in
topological models which guarantee TEMO without inversions is
explained. It also explains the motivation for carrying out the
cumbersome but very necessary work presented in the first three

notes of the series.
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