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SUMMARY

Hypervirial theorems and the perturbation theory are used to
obtain Stark energy levels of symmetric-top molecules. Analytical
energy levels up to the third order are shown and numerical higher-
crder perturbation eigenvalues are compared with accurate results

obtained via continued fraction techniques.

INTRODUCTION

In many areas of physical chemistry such as in Electric Resonance
Spectroscopy, the knowledge of the energy levels of molecules in
an electric field plays an important role. In order to evaluate
spectroscopic data, exact Stark energy levels are needed for an
accurate determination of molecular and nuclear parameters (such
as dipole moments, polarizabilities, anisotropies, etc.) which also
affect the energy levels.

The Stark energy levels of symmetric-top molecules can be
obtained numerically from a continued fraction technique /1,2/ or
by using the Rayleigh-Schrodinger (RS) perturbation theory /3/.
This last approach allows one to obtain an analytic expression for
a general rotational state, and clearly it constitutes a great

advantage. When the external field is relatively strong, as may
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happen in molecular beam resonance and elecbtrical level-crossing
experiments, higher-order perturbation corrections are necessary.
The conventional RS perturbation theory is not useful in these
cases, and consequently one has to resort to other perturbative
techniques /4-6/.

The purpose of this work is to present a new method for
obtaining high-order Stark effect terms for symmetric-top molecules.
The procedure is based upon hypervirial theorems, and is a
modification of that developed several years ago by Swenson and
Danforth /7/. It was applied recently with remarkable success to
analyse the Stark effect of a plane rigid rotator /8,9/ and the
three-dimensional rigid rotator /10/ in both low and high
intensity field cases. From now on, we will refer to this method
as the hypervirial-perturbative method (HPM).

This paper is organized as follows: the HPM is briefly developed
in Section II, where it is used in order to obtain a recursion
formula to calculate perturbative terms of any order, in an
analytical as well as numerical way. The Stark energy levels are
computed analytically up to the third order and numerically till
convergence, and for different values of the perturbation
parameter and quantum numbers. Our recursive formula possesses the
merit of being easily programmable, so that it allows us to get a
sufficient number of perturbation terms for obtaining very
accurate Stark energy levels even for quite strong fields. In
addition, our analytic third-order energy correction is wholly
new since it has not been given before.

Finally, in Section III we discuss the application of the HPM to
other closely related and more complex physical problenms.

STARK ENERGY LEVELS OF SYMMETRIC-TOP MOLECULES

The rotational energy levels of a rigid symmetric-top molecule
in an electric field can be determined from the stationary

Schrodinger eguation
HY = E¥ , (1a)

1= -2 (21p) " NsinTTe F5 s1ng o5 + sin”?

|
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+ (cos20/sin®e + T,/14)03%/0x" - 2cosesin™?e 2%/3x30

- yéeos , (1b)

where ¢,8,x are the Euler angles specifying the orientation of
the molecule, IC is the moment of inertia along the symmetry
axis, IB is the other principal moment of inertia, u is the
permanent electric dipole moment, and & is the electric field
strength.

The Schrodinger equation (1) may be separated by letting
¥(0,¢,x)=0(0)exp(iMé¢)exp(iKy). By introduction of the dimensionless
field strength and energy parameter

A= 2uEI /K7, (2)

2 2
€ = REIG/A° + (1 - IB/IC)K . (3)

the equaticn for 9(8) becomes

HO = €0 , (3a)
4= -sin™ 9 L sine & + (M2+%k%)sin"%0 - 2KMcosBsin™26
39 as
- Xcosd (3b)

For the zero field case (X=0), this last equation may be
solved in terms of hypergeometric series. The eigenvalues are
found to be

L A (4)

where J is the total angular momentum quantum number, M is its
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component along the direction of the field, and K is its component
along the molecular symmetry axis.

The Hamiltonian operator (3b) satisfies the following diagonal
hypervirial relationships

<(#,g"3/38)> = 0, (5a)

<(H,gn]> =0, (5b)

where g'=sinfcos™@. Using the Schrodinger equation (3) and Eg.
(5b) in order to get rid of all the terms containing derivative
expressions in Eq.(5a), we obtain

n+1 g 2

(a +302)6™ 7 + 2(nt1)ec™? + (30424 +an(K24M3-1))6"" ]

seneal1 - anGn'3 - 2kM(2n+1)6™ + a{26RtR4 (2n41) (6M126D))

=0, (6)
n n
where G =<cos 6> and an:n(n-i)(n-2)/2 :

Now we expand the G terms and the energy parameter € in A power
series, i.e.,

¢t = 1 ogai L g= g sl (7)
1=0 1=0

The energy perturbative corrections can be related to the Gl

terms by means of the Hellmann-Feynman theorem

aefan = <8 4 8- gl (8)
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The substitution of Egqs. (7)-(8) in Eq. (é) permits us to arrive
at a recursion relationship invelving only Gg terms:

2y n+7 L T
#_ i =
(2(nt1)J%-a -3n")G] 2(ﬂ+1)iE1Gi-TGs-i/l

2 3 i R B, (S n-3
+ P e -
(3n"+2a +2n(K*4M°-T¥-1))G " + zni§1si_1as_i/1 a G
n n nE2:
-2(2nt1)EMG - (2n+1)G] 4 + (2043)G. 5 = 0 . (9)

Starting from the normalization condition GO=650 and calculating
with Eq.(9) order by order yields all the G, terms. Then, we
obtain the energy perturbative terms from Eq.(8).

The computation of €(S requires the set of terms [Gid.. i=1,2,

+eey8} from the previous steps. The first three energy orders are

etV = gwyge (10)
() = (2kPWB (53%43) 202 (30RRA) T 43, (1)
e03) = kmt (MZ+k2) %2 (70 %4 6) - 50 A k22 (97 %2119 %46) )

H eI L pame-a) (T3] o (12)

The determination of trajectories in beam deflectors and state
selectors requires the knowledge of the effective dipcle moment
uerf=—3E/3€. From Eqs.(2) and (3) it can be seen that our method
allows onec to calculate i pp in a very easy and simple manner:

1

Hepp = -MIESDA = nuG' . (13)
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We have numerically calculated the first N perturbation
coefficients ell) by means of FKgs. (8) and (9) and obtained

e i = ; (i) i (14)
I KM g et

for N large enough to achieve convergence. Results for several A,
K,M and J values are compared with Shirley's in Tables I and II.
It is noteworthy that perturbative Stark effect cigenvalues are
accurate enough, even for quite strong electric fields, and their
accuracies increase with the total angular momentum quantum
number.

TABLE I
Stark energy levels e w(}) of symmetric-top molecules. J=1
and J=2.

M= -1 M =1 J =K =1
A Ref.1 Present Ref.1 Present N
0.2 2.09847 2.09847 1.89852 1.89852 >
0.4 2.19380 2.19380 1.79420 1.79420 3
0.6 2.28581 2.28581 1.68716 1.68716 4
0.8 2. 37437 2437437 T 57755 1.57755 )
1.0 2, 45931 2.45931 1. 46550 1. 46550 [
2.0 2.825 2.8246 0.873 0.8728 9
3.0 3.080 3.0804 0.236 0.2356 )
M =1 M= 2 J =2, K=1
A Ref.1 Present Ref.1 Present N
02 5.96679 5.96679 5.93249 5.93249 3
0.4 5493375 5+93375 5.,86332 5.86332 3
0.6 5,90075 5.90075 ST 3251 5.79251 4
0.8 5.86769 5.86769 5.72009 5.72009 5
10 5.83445 5.83445 5.64610 5.64610 6
2.0 5.662 5.6623 5.254 542535 7
3.0 5.473 5.4733 4.826 4L.8259 9
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TABLE TI
Stark energy levels €1k M(A) of symmetric-top molecules. J = 3
» L
and J = 4.

M= -3 M= 3 J=K=3
A Ref. 1 Present Ref. 1 Present N
1.0 12, 74369 12. 74369 11,2444 11.24474 5
2.0 13424 13.4737 10. 477 10. 4774 5
3.0 14.188 14.1884 9.701 9.7009 5
4a0 14.886 14.8858 8.915 8.9155 6
5.0 15.564 15: 5637 8.122 81221 6
M= -4 M= 2 J= 4, K=1
A Ref., 1 Present Ref. 1 Present N
1.0 20.19122 20.19122 19.90184 19.90184% 5
2.0 20.365 20,3647 19.807 19,8068 5
3.0 20, 520 20.5200 19.714 19.7142 5
4.0 20,657 20,6572 19.623 19.6230 6
5,0 20.776 20.7758 19.532 19.5324 6
COCLUSTONS

The method presented in this work is very useful to calculate
high-order perturbational corrections. The recursion formula (9)
permits us to obtain analytic perturbative terms with plain ease
and can be programmed readily in order to compute higher-order
corrections. In short, we may affirm that Eq.(9) summarizes in
itself all the advantages of the HPM.

Our method ig not constrained to the problem considered in this
work, but, in addition, it allows us to include, without any extra
trouble, the effect due to melecular pelarigability. At present,
we are performing the calculations for diatomic molecules and
results will be published elsewhere in a forthcoming paper.

An alternative procedure to calculate perturbational corrections
was given recently by Morita and Watanabe /11/. Later on,
Ferndndez and Castro /12/ presented an extension of it with the
purpose to treat degenerate states, This method, which is based
on continued fractions, may be directly employed for the problem
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considered in this work. However, in striking difference with
regard to the HPM, 1t does not afford us a sinmple and easy to

use formula equivalent to Eq.(9).
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