AN UPPER BOUND FOR TOTAL II-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS

LEMİ TÜRKER

Middle East Technical University,
Department of Chemistry, Ankara, Turkey.

(Received: August 1983)

Abstract. An upper bound for total m-electron energy of alternant hydrocarbons is derived which reflects the topology of the molecules much better than the McClelland's formula.

1. Introduction

The total π -electron energy (E_{π}) is an important property of conjugated molecules and has attracted much attention in the last few decades [1-3]. Coulson found the relationship which exists between E_{π} and the coefficients of the molecular graph [4]. Gutman et al have made several efforts to modify the original complicated analytical form of Coulson's formula [5]. The McClelland's formula is the simplest of all the topological total π -electron energy formulae [6] but it contains insufficient

topological parameters to reproduce \mathbf{E}_{π} with an accuracy which is required for chemical purposes [5].

In this work a rather simple formula for the upper bound of \mathbf{E}_{π} has been derived for alternating hydrocarbons (AH) which is more accurate than the McClelland's topological formula.

2. Theory

Combinatorially, r-combinations of n distinct things are given by (1)[7]. So pairwise combinations of e disjoint edges are expressed by (2).

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

$$= \binom{n}{r}$$

$$C(e,2) = \binom{e}{2}$$
(2)

(2)

Suppose G_{O} is an undirected planar graph, having e edges and N vertices such that the degree (di) of every vertex in G is $1 \le d_i \le 3$ (a Hückel graph [8,9]). Let G_i^t be one of the partial subgraphs of G such that it has four vertices of degree-one only.

Now, consider that two disjoint edges in G! become incident or from the same vertex, through operation O.

$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \xrightarrow{\hat{O}} \begin{pmatrix} 1 & 2 \\ 1 & G_{\hat{O}} \end{pmatrix}$$

$$G_{\hat{O}} = 1$$

$$G(2,2) = 1$$

$$G(2,2) = 0$$

Therefore, the appearance of every vertex having degree two $(d_i = 2)$ in G_O^i , decreases the degree of freedom of the pairwise combination of e disjoint edges by one.

Now, let G_1^* be a partial subgraph of G_0 such that it has six vertices of degree-one only. The pairwise combination process of three disjoint edges is shown below. The operation \hat{Q} on G_1^*

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \end{pmatrix}$$

$$G_{i}^{*} \qquad G_{i}^{*} \qquad G_{k}^{*}$$

$$C(3,2) = 3$$

$$C(3,2) = 0$$

produces $G_{O}^{"}$ in which all the three edges are incident or from the same vertex. So every vertex having $d_{\dot{1}}=3$ decreases the degree of freedom of the above mentioned pairwise combination of edges by three.

Let S be a set of partial subgraphs (G_1' -type) of G_0 . The number of set elements can be formulated by considering the above arguments as follows.

$$C(e,2) = {e \choose 2} - v_2 - 3v_3$$
 (3)

where, \mathbf{V}_2 and \mathbf{V}_3 stand for number of vertices having degree-two

and three.

According to Coulson-Sachs graphical method [10,11,12], a_4 coefficient of characteristic polynomial of a Hückel graph is given by,

$$a_4 = \sum_{J} \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - 2R_4 \tag{4}$$

where, R_4 represents the total number of 4-membered rings and indice J indicates that summation is over all such kind of sets. It is evident that in (4) summation term is equal to C(e,2). Therefore, a_4 is expressed by (5).

$$a_4 = {\binom{e}{2}} - V_2 - 3V_3 - 2R_4 \tag{5}$$

Now, consider a polynomial P(x) of degree N (an even number) with leading coefficient 1,

$$P(x) = x^{N} + a_1 x^{N-1} + a_2 x^{N-2} + \dots + a_{N-1} x + a_N$$
 (6)

and let x_1 , x_2 ... x_N be its roots (counting multiplicities), then P(x) has the following expansion:

$$P(x) = (x-x_1)(x-x_2)...(x-x_N)$$
 (7)

Suppose roots of $P\left(x\right)$ are symmetrically distributed about the zero such that,

$$x_1 = x_N \tag{8}$$

$$x_{N/2} = -x_{N/2 + 1}$$

then P(x) becomes,

$$P(x) = (x^2 - x_1^2) (x^2 - x_2^2) \dots (x^2 - x_{N/2}^2)$$
(9)

Multiplying out the paranthesis on the right and then collecting like terms and comparing the resulting coefficients. With the coefficients of (6), one gets Vieta's formulae [13], modified for a polynomial which has N symmetrical roots. Where,

$$a_2 = -\sum_{i=1}^{N/2} x_i^2$$
 (10)

$$\mathbf{a_4} = \sum_{\mathbf{i} \leq \mathbf{T}}^{\mathbf{N/2}} \mathbf{x_i^2} \mathbf{x_J^2} \tag{11}$$

Since, eigen values are symmetrical in even alternant hydrocarbons [14], (10) and (11) hold for secular polynomials of this class of compounds. For odd alternant hydrocarbons having M atoms upper indices of (10) and (11) are expressed by $\frac{M-1}{2}$, because inevitably $x_{(M+1)/2} = 0$ for this class of compounds. Inserting N=M-1, equations (10) and (11) can be used for odd AHs as well.

The following inequality holds for mean and mean power of order α of the positive numbers $\mathbf{k}_1,\mathbf{k}_2,\ldots,\mathbf{k}_n$ [15].

$$\left(\frac{k_1^{\alpha} + k_2^{\alpha} + \dots k_m^{\alpha}}{m}\right)^{1/\alpha} \geqslant \frac{k_1 + k_2 + \dots k_m}{m}$$
 (12)

for $\alpha = 2$, it becomes,

$$\sqrt{\frac{\sum_{\mathbf{k_i}}^2}{\sum_{\mathbf{m}}}} \ge \frac{1}{m} \sum_{\mathbf{k_i}}^{\mathbf{m}} \mathbf{k_i}$$
 (13)

$${\bf m}_{\Sigma k_{i}} = \frac{{\bf m}/{2}}{(\Sigma x_{i})^{2} - \Sigma x_{i}^{2}}$$
(15)

On the other hand, the total $\pi\text{-electron}$ energy \boldsymbol{E}_{π} within the Hückel framework is given by [16].

$$\mathbf{E}_{\pi} = \begin{array}{c} \text{occ} \\ \mathbf{E}_{\pi} = \begin{array}{c} \mathbf{b}_{i} \mathbf{x}_{i} \end{array}$$
 (16)

where $\mathbf{b_i}$ is the occupancy number and for closed shell systems its value is equal to 2. Since the followings hold for Hückel graphs [10],

$$a_2 = -e$$

$$\sum_{i=1}^{N/2} x_i^2 = e$$
(17)

by inserting (16) and (17) into (15) one gets (18) for alternant hydrocarbons.

$${}^{m}_{\Sigma} k_{i} = \frac{(\frac{1}{2}E_{\pi})^{2} - e}{2}$$
 (18)

On the other hand, (14) leads to,

$$\Sigma k_i^2 = \sum_{i \le J}^{N/2} x_i^2 x_J^2 \tag{19}$$

$$= a_4$$

So, (13) becomes,

$$\sqrt{\frac{a_4}{m}} \geqslant \frac{E_\pi^2}{8m} - \frac{e}{2m} \tag{20}$$

By rearranging (20) one gets (21).

$$E_{\pi} \leq 2\sqrt{\sqrt{4ma_4} + e} \tag{21}$$

where m = $\binom{N/2}{2}$. Algebrically m is equal to number of summands in the expression of $\sum\limits_{i\leq J}x_ix_J$.

Let, E_M = $\sqrt{2 \text{Ne}}$ (McClelland's formula [6]) and E_L be total π -electron energy calculated by (21). If E_L \leq E_M, then $\text{E}_{\text{L}}^2 \leq \text{E}_{\text{M}}^2$, (E_L, E_M > 0) and,

$$E_{\mathbf{L}}^2 - E_{\mathbf{M}}^2 \le 0 \tag{22}$$

It means that E_L approximates the value of E_π better than E_M does. By substituting equivalents of E_L and E_M into (22), equations (23) and (24) are obtained. Dividing both sides of (24) by Ne/2,

$$4\sqrt{4ma_4} + 4e-2Ne \le 0$$
 (23)

$$2\sqrt{4\text{ma}_4} + 2e \leq \text{Ne}$$
 (24)

rearranging, one gets (25).

$$\sqrt{\frac{4ma_4}{N^2e^2}} \leq \frac{1}{2} - \frac{1}{N}$$
 (25)

By substituting,

$$m = {N/2 \choose 2}$$

$$= \frac{N}{4}(\frac{N}{2} - 1)$$
 (26)

and,

$$a_4 = \frac{e^2 - e}{2} - v_2 - 3v_3 - 2R_4 \tag{27}$$

into (25), one obtains,

$$\sqrt{(\frac{1}{2} - \frac{1}{N})[\frac{1}{2} - \frac{1}{2e} - (\frac{V_2 + 3V_3 + 2R_4)}{e^2}]} \le \frac{1}{2} - \frac{1}{N}$$
 (28)

Simplifying and rearranging,

$$2e^2 \le Ne + 2N(V_2 + 3V_3 + 2R_4)$$
 (29)

The validity of (22) depends on whether (29) holds or not. Since the followings are true for a Hückel graph [10],

$$\Sigma d_{i} = 2e \tag{30}$$

$$3V_3 + 2V_2 + V_1 = 2e$$
 (31)

$$v_1 + v_2 + v_3 = N$$
 (32)

one gets,

$$2V_3 + V_2 = 2e - N$$
 (33)

On the other hand, it is obvious that,

$$3v_3 + v_2 + 2R_4 \ge 2v_3 + v_2$$

 $\ge 2e - N$ (34)

Therefore, (29) is valid if (35) holds.

$$2e^{2} \le Ne + 2N(2e-N)$$
 (35)
 $\le 5Ne-2N^{2}$

By using the Euler formula (e = N+r-1)[10], (35) is converted to (36),

$$2r^2 + 2 - 4r \le N^2 + Nr - N \tag{36}$$

Since, $2 \le N^2-N$ and $2r^2-4r \le Nr$ for a Hückel graph having $N \ge 2$, then (35) is true. This result proves the validities of (29) and (22). Therefore, E_L which is derived in this work and expressed by (21) gives a better upper bound for the total π -electron energy of alternant hydrocarbons.

3. Result and Discussion

The total π -electron energy, E_{π} , can be calculated with the desired accuracy by applying Sachs' theorem through tedious calculations [1]. On the other hand, McClelland's formula is simple but contains insufficient topological parameters to reproduce E_{π} with an accuracy which is required for chemical purposes. Table 1 tabulates upper bounds of E_{π} (E_{max}) for certain alternant hydrocarbons, estimated by (21), E_{L} and McClelland's formula, E_{M} , together with true values of E_{π} within the Hückel framework. As proved above, all the values predicted by formula (21) are much closer to real E_{π} values compared to results given by McClelland's E_{max} formula.

By inspection of formula (21), it can be seen that as the number of edges and carbon atoms increase, the upper bound of $E_{\pi} \text{ increases, whereas increasing number of 4-membered rings and}$ branching decrease the E_{max} .

 $$\underline{\text{Table 1}}$$ \texttt{E}_{π} and \texttt{E}_{max} values for certain alternant hydrocarbons.

	E _{max} Values		_
Compound	E _M E	EL	Ε _π [17]
<u></u>	3.46	2.82	2.82
///	4.89	4.47	4.47
<u> </u>	4.89	3.46	3.46
	7.74	7.34	6.98
	5.65	4.00	4.00
<u></u>	9.16	8.23	8.05
\	7.74	7.14	6.89
	8.48	8.09	8.00

Formula (21) can also be used for isomeric alternant hydrocarbons having different a_4 values to predict the trend of E_π (Table 1). Also, a regression analysis of formula (21) for specific type of alternant hydrocarbons can be done to correlate the E_π and the topology of similar type of molecules.

REFERENCES

- [1] I. Gutman and N. Trinajstic', Chem. Phys. Lett, <u>17</u>, 535 (1972).
- [2] A. Graovac, I. Gutman and N. Trinajstic', Chem. Phys. Lett, 37, 471 (1976).
- [3] I. Gutman, Chem. Phys. Lett, 50, 488 (1977).
- [4] C.A. Coulson, Proc. Cambridge. Phil. Soc, 36, 201 (1940).
- [5] A. Graovac, I. Gutman and N. Trinajstic', Chem. Phys. Lett, 35, 555 (1975).
- [6] B.J. McClelland, J. Chem. Phys, 54, 640 (1971).
- [7] J. Riordan, "An Introduction to Combinatorial Analysis",

 John Wiley and Sons, Inc. New York 1958.
- [8] A. Graovac and N. Trinajstic', Croat. Chem. Acta <u>47</u>, 95 (1975).
- [9] A. Graovac and N. Trinajstic', J. Mol. Structure, 30, 416 (1976).
- [10] A. Graovac, I. Gutman and N. Trinajstic' "Topological Approach to the Chemistry of Conjugated Molecules", Springer-Verlag, New York (1977).
- [11] C.A. Coulson, Proc. Cambridge. Phil. Soc. <u>46</u>, 202 (1950).
- [12 | H. Sachs, Publ. Math. (Debrecen) 11, 119 (1964).
- [13] A. Kurosh, "Higher Algebra", Mir Publishers, Moscow, 1975.

- [14] M.J.S. Dewar, "The Molecular Orbital Theory of Organic Chemistry", McGraw Hill, New York, 1969.
- [15] P.P. Korovkin, "Inequalities", Mir Publishers, Moscow, 1975.
- [16] A. Streitwieser. Jr, "Molecular Orbital Theory for Organic Chemists", John Wiley and Sons, Inc., New York, 1961.
- [17] E. Heilbronner and H. Bock "The HMO Model and Its Application", Vol 3. John Wiley and Sons, New York, 1976.