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Abstract. An upper bound for total w-electron energy of
alternant hydrocarbons is derived which reflects the topology of

the molecules much better than the McClelland's formula.

1. Introduction

The total m-electron energy (E“) is an important property
of conjugated molecules and has attracted much attention in the
last few decades | 1-3]. Coulson found the relationship which
exists between E_ and the coefficients of the molecular graph [4].
Gutman et al have made several efforts to modify the original
complicated analytical form of Coulson's formula [5]. The
McClelland's formula is the simplest of all the topological

total m-electron energy formulae [ 6] but it contains insufficient
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topological parameters to reproduce Ew with an accuracy which

is required for chemical purposes [5].

In this work a rather simple formula for the upper bound
of E, has been derived for alternating hydrocarbons (AH) which

is more accurate than the McClelland's topological formula.

2. Theory

Combinatorially, r-combinations of n distinct things
are given by (1)[7]. So pairwise combinations of e disjoint

edges are expressed by (2).

Ciln,x) (1)

n
&

n

—
(1]

—

Cle,2) = (5 (2)

Suppose Go is an undirected planar graph, having e edges
and N vertices such that the degree (di) of every vertex in Go
is 1 <d; < 3 (a Hiickel graph [8,9]1). Let G} be one of the
partial subgraphs of Go such that it has four vertices of

degree-one only.

Now, consider that two disjoint edges in Gi become

incident or from the same vertex, through operation 6.

/%) == N

c(2,2) =1 c(2,2) =0
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Therefore, the appearance of every vertex having degree
two (di = 2) in Gé, decreases the degree of freedom of the

pairwise combination of e disjoint edges by one.

Now, let G} be a partial subgraph of GO such that it has
six vertices of degree-one only. The pairwise combination process

of three disjoint edges is shown below. The operation § on G;
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produces Gg in which all the three edges are incident or from the
same vertex. So every vertex having di = 3 decreases the degree
of freedom of the above mentioned pairwise combination of edges

by three.

Let 5 be a set of partial subgraphs (Gi-type) of Go' The
number of set elements can ke formulated by considering the

above arguments as follows.

e
Cle:2) = (2) -V, - 3V, (3)

2

where, V2 and V3 stand for number of vertices having degree-two
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and three.

According to Coulson-Sachs graphical method [10,11,12],
a, coefficient of characteristic polynomial of a Hiickel graph

is given by,

(279 - 2R, (2)

e
a4=
oo

z
J
where, R4 represents the total number of 4-membered rings and

indice J indicates that summation is over all such kind of sets.

It is evident that in (4) summation term is equal to Cl(e,2}.
Therefore, a, is expressed by (5).
a, = (5)-v,-3v,-2r (5)
4 2 2 3 4
Now, consider a polynomial P(x) of degree N (an even

number) with leading coefficient 1,

M2 +a. x+a (6)

P(x) = xta a2 L o

and let x;, %, ... Xy be its roots {counting multiplicities},

then P(x) has the following expansion:
P(x) = (%=%) (x=%5) o0n. (x-2) (7)

Suppose roots of P(x) are symmetrically distributed

about the zeroc such that,

Xy =Xy (8)

AN/25 N2 1
then P(x) becomes,

P (x)=(x°-x) (k=) o (2ol ) (9)
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Multiplying out the paranthesis on the right and then
collecting like terms and comparing the resulting coefficients.
With the coefficients of (6), one gets Vieta's formulae [13],

modified for a polynomial which has N symmetrical roots. Where,

N/2 2
a; = - z Xy (10)
i=1l
N/2
2 .2
a, = z X X3 (11)
i<g

Since, eigen values are symmetrical in even alternant
hydrocarbons [14], (10) and (11) hold for secular polynomials
of this class of compounds. For odd alternant hydrocarbons
having M atoms upper indices of (10) and (11) are expressed by
M-1 : . i
5 because inevitably X(m+1)/2 = 0 for this class of compounds.

Inserting N=M-1, equations (10) and (11) can be used for odd

AHs as well.

The following inequality holds for mean and mean power
of order o of the positive numbers kl'kz""kn {151 .
KO +x% 4L, k% 0k w4k
m 1 2

= 2 ) N N SRR (12)
m m

(

for o = 2, it becomes,

T2
o TW 1
N T (13)
m m 1
Let, m N/2
z ki = X X Xy (14)
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N/2 N/2

P Z x
i _ (15)
On the other hand, the total m-electron energy En within

the Hiickel framework is given by [16].
E_ = I b.x, (16)

where bi is the occupancy number and for closed shell systems
its value is equal to 2. Since the followings hold for Hiickel

graphs [10],

a2 ==&
N/2 2
Ixj=e (17)

by inserting (16) and (17) into (15) one gets (18) for alternant
hydrocarbons.

m (%E")z-e
Tk, = —e0u0u (18)
1 2

On the other hand, (14) leads to,

k2 = 2 xix’ (19)
g g
= 64
So, (13) becomes,
2
a E
4 i e
i A " R 0
m 8m 2m tet)

By rearranging (20) one gets (21).
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EWQZ\/\/ 4ma4+e (21)
N/2 ; ;
where m = ( 2 ). Algebrically m is equal to number of summands
N/2
in the expression of I xixJ.
i<g
Let, EM =+ 2Ne (McClelland's formula [6]) and EL be
total w-electreon energy calculated by (21). If En < EM,then
2 2
<
ELM\EM’ (EL, EM > 0) and,
2 32
o <
Ep EM <0 (22)

It means that EL approximates the value of E:Tr better than EM does.
By substituting equivalents of E, and E into (22), equations

(23) and (24) are obtained. Dividing both sides of (24) by Ne/2,

4\/4ma4 + de-2Ne < 0 (23)
ZV/Qma4 + 2e < Ne (24)

rearranging, one gets (25).

Ama4

1 1
= 5ok (25)
N292 2 N
By substituting,
i (NQZ)
N N
= Z,(_Z__]_) (26)
and,
ez-e
a, = 3 = V2—3V3—2R4 (27)
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ipto (25), one obtains,

V.3V, +2R,)
L Aed X {2 3 4 1 1
\/(E_ﬁ)[?-z _ez___]gi_ﬁ (28)
Simplifying and rearranging,
2
2e“ < Ne+ 2N (V2+3V3+2R4) (29)

The validity of (22) depends on whether (29) holds or

not. Since the followings are true for a Hiickel graph (10],

4 =2e (30)

VgtV V) = 2e (31)

V1W2+V3 = N (32)
one gets,

2V3’+V2 = 2e-N (33)

On the other hand, it is obvious that,

v, tv

3 2+2R4>2V

3%V

>2e-N (34)
Therefore, (29) is valid if (35) holds.

2e® < Ne + 2N (2e-N) (35)

< SNe-2N°

By using the Euler formula (e = N+r-1)[10], (35) is converted

to (36),



32 2=ty < N2+Nr-N (36)

Since, 2 < N2-N and 2r’-4r < Nr for a Hiickel graph having N > 2,
then (35) is true. This result proves the validities of (29)

and (22). Therefore, EL which is derived in this work and
expressed by (21) gives a better upper bound for the total

n-electron energy of alternant hydrocarbons.

3. Result and Discussion

The total m-electron energy, E“, can be calculated with
the desired accuracy by applying Sachs' theorem through tedious
calculations [1]. On the other hand, McClelland's formula is
simple but contains insufficient topological parameters to
reproduce E_ with an accuracy which is required for chemical
purposes. Table 1 tabulates upper bounds of E1T (E ) for

max
certain alternant hydrocarbons, estimated by (21), EL and
McClelland's formula, EM' together with true values of Eﬂ within
the Hiickel framework. As proved above, all the values predicted
by formula (21) are much closer to real E_ values compared to

results given by McClelland's Emax formula.

By inspection of formula (21), it can be seen that as the
number of edges and carbon atoms increase, the upper bound of
E_increases, whereas increasing number of 4-membered rings and

pranching decrease the Emax.
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Table 1

E_ and Emax values for certain alternant hydrocarbons.

max Values

E_[17]
Compound EM EL L
+
g 3.46  2.82 2.82
A\F 4.89  4.47 4.47
++
P el 4.89  3.46 3.46

AN N
SO
N\ N

et

1 7.74 7.14 6.89

[:j 8.48 8.09 8.00

Formula (21) can also be used for isomeric alternant

hydrocarbons having different a, values to predict the trend of
E:?T (Table 1). Also, a regression analysis of formula (21) for

specific type of alternant hydrocarbons can be done to correlate

the E“ and the topolcgy of similar type of molecules.
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