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ABSTRACT.

The present notes endeavour, in what is believed to be a
rather new approach, to give a precise definition of double
groups of proper and improper point groups and a precise de-
scripltion of the mathematics of their application as symmetry
groups for certain classes of molecular electronic Hamiltonians
containing a spin-orbit coupling term. The ambiguities and
mysticism traditionally associated with the double groups is
removed by, firstly, defining the double groups of proper point
groups as subgroups of SU(2) [thus following Opechowski] ra-
ther than by the "addition" of a phantom non-identity 27 rota-
tion and, secondly, establishing in a rigourous way the con-
nection between the double groups and the operators menlioned.
The latter is achieved by emphasizing the concept of operator

represcnlations of a group.
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1. Introduction.

Since the appearance of the famous "Termaufspaltung”
paper by Bethe [1], chemists and physicists have used the double
groups of the ordinary point groups in their symmetry analysis
of electronic Hamiltonians containing a spin-orbit coupling
term. A vast standard literature is available describing the
mathematics of the double groups in general [e.g., 2-12] or
just that of their common supergroup, the full rotation double
group [e.g., 13-16]. Some recenl papers are concerned with
definitions of the double groups in the context of so-called
projective representations [17-19 and references in thesel.
However, when it comes to the problem of explaining why the
double groups turn up in certain chemical or physical situa-
tions, many texts start discussing intricate questions such as
the possible distinguishability for fermion wavefunctions of 2m
and 47 rotations, intrinsic "parity" of electrons, etc. Such
approaches may, indeed, have their merits from the point of
view of obtaining a physical feeling for the situations where
double groups arise, but they tend to impair a certain measure
of mysticism and, consequently, vagueness to the definition of
the double groups themselves. This may give rise to problems
when the double groups are to be used for detailed quantitative

*)
analyses.

*) This is not to say that these physical aspects are not of impor-
tance. On the contrary, consider the recent experimental work aiming at
confirming the 4m (but not 2m) periodicity of fermion wavefunctions [20];
see also discussions of analogous phenomena in macroscopic geometry [21].

The point is just that we are able to avoid basing our definition of double

groups on such speculations.
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Strangely, no texts known by the present author - with
the partial exception of [4] - proceed simply by establishing
the double groups as symmetry groups for the spin-orbit coupling
Hamiltonian, i.e., as groups representable by groups of opera-
tors which commute with this Hamiltonian. 1If, however, one
does adopt this line of thought, one has the mental advantage
that any more or less transparent physical arguments only enter
the discussion through the assumption of a particular Hamil-
tonian, whereas the introduction of the double groups may be
accomplished separately with complete rigor.

On this background, the major purpose of these notes is
to show how the symmetry-group viewpoint may lead to the double
groups and, in fact, to the concrete matrix realization dis-
cussed by Opechowski [2] which is well suited for a precise
mathematical description.

We start by stressing in Chapter 2 the fact that a group
used for symmetry analysis of an operator acting on some space
may be of any particular abstract or concrete kind, provided
that it is connected to the operator by a suitable operator
representation of the group on that same space. This point of
view is crucial to the subsequent introduction of double groups
as matrix groups.

Chapter 3 describes the type of model Hamiltonians to be
investigated. The central Chapter & then presents a Lhorough
discussion of the way the double groups may be used as symmetry
groups for such Hamiltonians. Note in particular that double
groups of improper point groups are also defined. Chapter 5

gives some of the group theory of the double groups Lhus intro-



duced, and Chapter 6 contains some remarks on the actual appli-
cation of them. In Chapter 7 we collect a few additional com-
ments; it may be of interest to note already here that the his-
torical remarks trace the double groups back to the middle of
the last century, long before the appearance of Bethe's paper.

Some mathematical material, mainly proofs of assertions
made in the main text, has been put in the appendix to facili-
tate reading of the main text.

The reader who wishes to follow the arguments of these
notes closely will need familiarity with the following mathe-
matical material: basic notions of operators on linear and
Hilbert spaces; basic definitions of group theory (group, homo-
morphism, ordinary matrix and operator representations of
groups, direct product of groups); and the concept of tensor
products (direct or Kronecker products) of linear spaces, of
operators, and of group representations, for all of which we
shall use the product symbol "®". We shall not be concerned
with the aspects connected with projective representations

(for this, see the references cited above).
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2. Group representation analysis of operators; symmetry groups.

The present chapter describes the mathematical features of
one of the general situations in which group representations
are in an interplay with a (quantum-mechanical) model operator
being studied. The purpose at this stage is not to introduce
any new mathematics, but rather to emphasize a point of view
which the author has found generally useful and which will, in
particular, be invoked in the presentation of double groups
later on in these notes.

Suppose that we are studying some operator 2 acting on a
finite-dimensional Hilbert space V.

The symbol & is of course reminiscent of "Hamiltonian",
but we make no assumptions here regarding the nature of .
The assumption that V is finite-dimensional is made to
avoid in the sequel a series of technical mathematical
comments and digressions which would just obscure Lhe
ideas to be presented. In most of the practical applica-
tions we are aiming at, only operators on finite-dimensional

spaces are involved anyway.

Assume further that a pair (G,J) is given, where G is a
group and Fa unitary operator representation of G on V. Thus,
JIR) is a unitary operator on V for each R€ G and the opera-

tors J(R) form a homomorphic image of G.

Since groups are often in applications of the present
kind themselves thought of as having operators for
their elements, it may be useful to consider in some
detail an example of how one may have occasion to con-
sider such operator representations of groups.

Suppose we choose a Cartesian coordinate system some-

where in 3-dimensional space and study some point group G
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realized as transformations that fix the origin of this
coordinate system. Any group element RE G will have a
definite action on vectors r so that a new vector Rr
results when applying R to r.

Now assume that we are also studying a set of func-
tions defined in our space - e.g., a set of p or d or-
bitals centered at the origin. The transformations R
may also be made to act on such functions in the well-
known way: given a function Y, the transformed orbital
wR is defined by

Yple) = (R ). (2.1
The operator mapping functions { onto the corresponding
functions bp is often also just denoted R. If one wishes
to make a distinction, however, one may use a symbol
like P. If we do this, we have the siluation that every

R
group element R is assigned an operator Jh defined by

Prw) = vy (2.2)
for all functions ¢ in the function spacc considered.
Thanks to the particular form of definition (2.1), the
mapping ﬂ+.7)R (which itself is denoted P without any
subscript) is a homomorphism, i.e.,,

‘?RS -_?RPS for all R,SEG, (2.3)

and thus an operator representation of G. It is, in fact,

also unitary. We Lhus have an example, namely (G,P), of
the kind of pair (G,7) referred to above. (For a more
thorough discussion of operators of the type.?R, see,
e.g., [9, Sec.3-6; 14, Chap.11; 22, Chap.X1II, §11].)

Speaking of representations, if we choose an ortho-
normal basis set of vectors in 3-dimensional space, any
RE G will have an orthogonal 3X3 matrix R with respect
to this basis. The mapping R+ R is clearly a homo-

merphism and thus a matrix representation of G. Since

it is also faithful (one-to-one, injective), we may, in
fact, identify G with the set of matrices R, and this
is the way we shall look at point groups in the remainder

of these notes.
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The representation T induces an action of G on the linear
operators on V by the prescription
O g’ (2.5
for all R€ G and all operators Pon V.

The definition (2.4) represents the generalized
"rotation of observables" corresponding to the general-
ized "rotation of state vectors" effected by the oper-
ators J(R), REG (cf., e.g., (4, p.55; 22, Chap.XILIL, §121).

By an "analysis of the operator & on V with respect to (¢, 9"

we shall mean an examination of the decomposition of V into sub-
spaces invariant and irreducible under J and of the behaviour of df
under the operator action of J defined in (2.1). 1In the follow-
ing, we shall often focus on the situation where df in this lat-
ter respect transforms under T as the totally symmetric irre-

ducible representation:

TRHET(R) = HH for all REGC (2.5)

or, equivalently,

TR - H TR for all RE G. (2.6)
In this case, we shall say that (G,J) is a symmetry group for of.

Note the use of the indefinite article; there is in no
way any uniqueness associated with the concept defined
here, and we are in no conflict with definitions of "the
symmetry group" of an operator given at various places
in the literature.
Having a symmetry group is a desirable situation, giving the
well-known advantage of being able, briefly stated, to completely

or partly diagonalize Jf by adapting basis vectors in V to (G,J7).

And even if one analyses with respect to a group which is not a



= 29 =

symmetry group, useful information of a quantitative nature may

be obtained by using the Wigner-Eckart theorem if certain suitable
quantities associated with the group are available (i.e., if the
Wigner-Racah algebra of the group [14, 23, 24, 36] is sufficiently
developed).

In much of what is written on the use of symmetry groups,
the representation 91 which describes "how the group G acts on V",
is not mentioncd explicitly. Usually it is clear from the con-
text what g‘is; furthermore 9‘15 usually a faithful (one-to-one,
injective) representation, making it perfectly admissible to iden-
tify G with its image J(G) - {J(R)| R€ G} under T, so that G it-
self becomes a group of operators on V.

However, rctaining the operator representation F in the de-
scription does give one the possibility of studying the group G
separately, regarding it as an abstract group or realizing it in
any concrete manner one may wish. There is then no restriction
on the nature of the elements in G, since j'takes the full respon-
sibility for the connection of G to the space V on which 2f oper-
ates. We shall find this mental degree of freedom very useful in
the establishment of double groups as matrix groups below.
(Furthermore, we shall find it useful to operate wilh representa-
tions J which are not always faithflll).

We do not wish to imply by the above remarks that the

operator representation viewpoint is the only advantageous

way of looking at the connection between groups and the

various linear spaces whcre we want them to "act™. On the

contrary, sometimes it may be desirable to regard the

group elements as so intimately connected with the space

that the mathematical concept of a module (over the
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group algebra) may be relevant. We shall not pursue
this further here, but just mention a monography treating
group representation theory from the module point of
view [ 25].
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3. Electronic Hamiltonians with a spin-orbit coupling term.

Let us consider a general N-electron molecular eleclronic

Hamiltonian of the form
N y,
H- ) Far gy - . (3.1)
i=1 i<j
The first two terms make up the spin-free part of x; explicitly,
we have for Lhe one-electron operator
.F = -1v2 4 oy, {3:2)

where V2 is the Laplacian and v the potential created by the

nuclei, while the two-eleclron operator is defined by

i & 1 B s
4,00 = Ty ee 15i<j=N 3.3
} s J rjfrj J ( )
(all in atomic units). The Jast term in (3.7) is the spin-orbit

coupling operator, the explicit form of which is of importance
for our analysis. We shall restrict attention to the case where
it is a satisfactory approximation to take the spin-orbit coupling

to be of Lhe form
N
Hap ~ J §ly g (3.4)
i=1
where li is the orbital angular momentum of the i'th electron,

5, its spin anqular momentum and € a suitable constant.

The assumption (3.4) requires a comment. The spin-orbit
coupling term in a general molecular Hamiltonian results
from a relativistic treatment of the electron and generally
has a more complicated form [g.g., 26, Sec.3-3; 27, Chap.9;
28, Chap.2; 29-32]. The particular form (3.4) is a good
approximation when the electrons move in a central potential.
It is generally used in ligand field theory [ é,32,33; see
also Chapter 6 helow}; this has been discussed in [31,52].

We shall have further comments to make on the form of the

spin-orbit coupling operator below, after having introduced
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the double groups; until then, we ask the reader to accept

(3.4) simply as a definition of the model operator we are

going to study.

In order to be able to perform a group representation analysis
ofér in the sense of Chapter 2, we now intend to explain a little
closer what is meant by (3.1)-(3.4). This will take up the rest
of the present chapter, and readers who wish to do so may skip
it, at least in a first reading.

The first point of interest is the structure of the Hilbert
spdace on whichxacts.

The orbital part of the description of electrons in molecules
is usually - explicitly or implicitly - based on the Hilbert space
L (R*) consisting of the (equivalence classes of) square-inte-
grable complex functions on three-dimensional space B Generally,
orbitals - one-electron functions - are taken from some more or
less explicitly specified closed subspace Vo; s (Rﬂ; for actual
computation, V0 is usually finite-dimensional, being spanned by
the basis set of orbitals employed in the calculations. Spin is
taken into account by giving each electron an extra degree of free-
dom with two possible expectation values, "spin up" (or "a spin")
and "spin down" (or "B spin"). Mathematically, this may be effectecd
in the one-electron description by forming the space VU®C2, where
C denotes the field of complex numbers. Here ¢’ is spanned by
((;),(?)}, which is an orthonormal basis if the usual scalar
product on ¢? is used, and where we identify (é) with @ spin and
<(‘f,> with B spin.

In all, we shall consider the N-electron operator (3.1) as

an operator on the Hilbert space V - (VARCZJ@N.
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In fact, because of the Pauli principle, all the physics
of the N-electron system takes place in the totally anti-
symmetric subspace of this N-fold tensor product space.
However, this further qualification has no influence on
the subsequent develepments regarding double groups and

will therefore be suppressed.

The sums of operators appearing in (3.1) are then to be inter-

preted in the appropriate way, e.4., the spin-orbit coupling term

is understood Lo mean

[z1ls]l]®l®....00 1
v Telglsl@....o I
£ o (3.5)
+ 1 &1 ® .... & [ 1-8]

where 1 is the identity operator on V0 @ ¢% In the following it

will be convenient for us to write

N
H -, VY s (3.6)

i=4
with
It o
Ho = ) VD« g(LD) (3.7)
i=1 i<j
and
N
v‘: T‘u«(i) . (38)
1=1
(3.4);

We shall focus our attention mostly on the last term,

to specify fully this operator, we need some more definitions.

The operators Rx, Ry, and EZ on VD for the Cartesian com-

ponents of orbital angular momentum (still in atomic units) are

defined by



s BT A ey i
gx % 3y Y 3z )i
& o . 3y,
o {(x = z o ); (3.9)
. 3 ]
2 = s AR 1
and 5 B t(y Ix X 3y )

Technical note: the operators lx, L, and QZ are only
densely defined in L?(R®*), but we shall assume that v,
falls within their domains and that VO is invariant under
all three of them. This requirement is usually fulfilled
in practical calculations including spin-orbit coupling
(to the extent that V0 is at all specified beyond symmetry
of the orbitals).

The operators Ax, Ay’ and AZ on €% for the three Cartesian
components of spin angular momentum may be defined by giving their

matrices with respect to the above-mentioned basis for £2; they

are %ux,%oy, and bo’, respectively, where the Pauli spin matrices

are

o1 ro-iy /1 0
« = xq ov 8 oyf\l- 0), and 0, = \p _1). (3.10)9

The operator 1:'s on Voﬂcz , appearing in the expression (3.%),

is then defined by
1-s - £x®4x \ ngAy + QZ®4Z . (3.11)

It is thus the scalar product, in a tensor product sense, of Lhe
two operator-component vectors 1 and s.

We have now discussed the operator defined by (3.1)-(3.4) in
sufficient detail to be able to show in Chapter 4 how double groups
naturally offer themselves as symmetry groups for this kind of

operator.
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4. Group representation analysis of the spin-orbit coupling -

containing Hamiltonian: definition of double groups.

In order to perform a "group representation analysis"
(Chapter 2) of the operatordf in (3.6), one may start by consid-
ering the term &z. A frequent statement is thal this term has
"full spherical symmetry". Let us analyse what is meant by this.

Let 0(3), also often denoted R or K., be the full rotation

3i
group in 3 dimensions, realized as the group of 3X3 real orthog-

onal matrices in the way discussed in Chapter 2. There is awell-
known unitary“) representation Pof 0(3) on L2(R?) (cf. Chapter 3),

and thus on V,.., if it is invariant under P, namely the one de-

fined by
(PR I(r) ~ ¢ (R r) for all RE 0(3) (4.1)

for all functions ¥ in Lhe space considered. This is just the
ordinary definition of the operation of "rotation of functions"
{cf., e.q., [22, Chap.XITT, §11]); we already discussed this rep-
resentation in Chapter 2.

What we mean by saying that c?fo is spherically symmetrical
is essentially that Jf,, commutes with all the operators P(R).
However , :% acts on the space (\/‘,@ﬂz)wﬂ,so to make the statement
precise, we must somehow make Lhe operators P(R) act there, too.
The simplest way to do this is to take the operators (P ) I 1%,
where J denotes the identity operator on €. If we put G = 0(3)

and define

*} The unitarity of P amounts to the fact that YU, ¢€L®(R%) :

<J’(R)‘¢'J?(R) p> = IRA PR 'r)9 (R r)dr - ngw(r)w(r)dr

v

=< | g> for all REO0O(3), which is a well-known property of the integral.
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Tw) - (Pw)ed®"  ror Rec (4.2)

then we have a set-up completely analogous to the one described
in Chapter 2. The statement that éﬁ is spherically symmetrical
is equivalent to saying that this pair (G,7) is a symmetry group for
H,(er. [ 4, pp.90-921).

In fact, for the operator on Lhe right side of (4.2) Lo com-
mute with )&, it would suffice to write just any operator on &=
as the second tensor factor. This is bhecause JHo acts trivially
on €%, We shall make use of this remark later in this chapter.

If we add on now the term UVofl (3.8), the pair (0(3), is
in general no longer a symmetry group. "The symmetry has been
lowecred" to some subgroup GZ0(3), a point group, meaning that
while (0(3),9) is not a symmetry qgroup for J{av'. the pair (G,Té)
is a symmetry group for this new operator. Here we denote by j;
the restriction of the representation warom 0(3) to G. It is
still immaterial whether we write J or any olher operator as the
second tensor factor in (4.2).

Now comes the interesling point: we include alse the spin-
orbit coupling term. To be able to investigate the consequences
of this we need the following (well-known) property of the opera-

tO[‘SL,R,dndE:
X y z

Proposition 1. The aperator set L - (Ex,iy,iz) "transforms under
rotations as a pseudovector". In terms of the representation

defined above, this mcans that

i .
Py, w2 Py (2, 2, 2,) [(detRIR]

for all matrices R €0(3). (4.3)
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This is a compressed way of writing 3 equations; thus, taking out

the x component of (4.3), we gel

JP(R)’LX.?(R)-l = (detR) 5“ Ryx &, (4.4)
Vex,y, 2z

Differently staled, the operator set 1 transforms under j)as the
particular real matrix form D, defined by D (R} - (detR)R, of
the irreducible representation Py of 0(3).
The result in Proposition 1 is 'physically' rather
obvious from the definition of angular momentum. It may
alas be verified by direct calculation. Thus, for example,

(4.4) may be proved by showing that for any function ¥ and
any matrix R - (Rij)’ i,j = x,v¥y2, in 0(3) we have

i 3 % L
UPRILP®R™ 11r) = [detRR 2+ R 2+ R Z V)

for all r € Ra-

For this, one uses the chain rule for partial differenti-
ation when applying Ex’ ly, and lz according to defini-
tions (3.9). Readers interested in the details may con-
sult Appendix A.

The transformation property of 1 thus established is
put into a 'tensorial set' context in [?4a, Eq.(47)]
and in [24b, Sec.l.8].

Proposition 1 shows that after addition of the spin-orbit
term the pair (C,gh) with T defined in (4.2) will not in general
be a symmetry group for the operator. Operating on l:s with
y(R)@Jthr some REG will generally produce a mixture of all terms
of the form lu®46‘ (The reader may care to work out, as an exer-
cise, what the symmetry of Jﬁois under the representation T de-
fined in (4.2).)

However, we shall see that invoking just one more substantial
mathematical result we can find a natural symmetry group for the

operator (3.6). Hefore we state Lhis mathematical result as
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Proposition 2, we recall two definitions: SU(2) is the group of
unitary 2x2 matrices with determinant +1, and S0(3) is the sub-
group of 0(3), defined above, consisting of 0(3)-matrices with
determinant +1. Also, let 1 denote the 2X2 unit matrix and E the
3X3 unit matrix.
Alternative notations include dj, R;, K, 0" (3) and,

unfortunately, even 03 (in[ 5]) for SO(3); and u, (U, in

(51), Ry, and K' for SU(?).
Proposition ?. There is a (in fact, preciscly one) surjective

("onto") homomorphismm : SU(2) + S0(3) such that

s
g(oxoyoz)g = (oxoynz)n(g) for all g € SU(2), (4.5)

where the Pauli spin matrices are defined in (3.10). The kernel
{g€su(2)|n(g) = E} of m is the group {1,-1} so that n(g) -7 (-g)

for all g €5U(2).

Discussions of the relationship between SU(2) and SO(3)
apparent from Proposition 2 are abundant (s, Sec.5.1]3
(5] [6,§§6.92, 6.10]; [13, §11.117; and references given
below), but to get directly to the particular information
stated in (4.5), see [ 7, Scc.7.1) [14, Chap.15]; [15,
Sec.29]; or [16, §11.7]. Note that the last two references
treat T as the adjoint representation of SU(2) on its

Lie algebra su(2) which is spanned by the Pauli matrices
all multiplied by ¢ (there is a misprint in [6]; X, at
the bottom of p.78 should be multiplied by an ¢).

For the present we shall be satisfied with the informa-
tion given in Proposition 2; in Sec.5.3 we shall de-
scribe more explicitly the homomorphism .

Lest the reader feel that invoking Proposition 2 is
"pulling the rabbit out of the hat", we stress that
SU(2) or R:" is the basis for angular momentum theory
le.q., 6,7,9,14,22], although the group itself and its
representations are not always used very explicitly;
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and (4.5) may be viewed as stating a transformation
property of the Pauli matrices quite analogous to (4.3)
for the orbital angular momentum operators. So it is
nol unnatural to try and make use of this information in
the present context.

In order to see what kind of application we can make of

Proposition 2, we now sliart by noting Lhat

Platad) (a0 2)Plutg) = (4, 2 2D, (7(q))
for all g €5U(2); (4.6)

this follows from (4.3) just by replacing R by m(g). Further-
more, we may rewrile (4.5) as

TTa) (s, a, 4,)THEI = (4, 4 4,00 (T(a))
for all g ¢€5SU(2) (4.7)

if we define1T(g) to be the operator on ¢’ having the matrix g

with respect Lo the orthonormal basis for €% mentioned in Chap-

ter 3. (Thus, (4.7) is just the operator equation corresponding

to the matrix equation {(4.5).) Comparing (4.6) and (4.7), we see
that we have two very similar situations: the operator set 1
transforms under the representation Po w as the real matrix rep-
resentation Dy o m of SU(?), and the set s transforms under J] as

the same real matrix representation of SU(2). From this it may
actually be easily shown that l+s = £x®4x ' Ey@Ay N !Lz® Az
commules with all the opcrators(in(g))«gTr(g), g € SU(2), on V0®c2

and thus that (50(2), KPem@1®M) is a symmetry group for the

spin-orbit coupling term (3.5). The necessary arguments are

given in Appendix B.
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At this point we owe the reader a comment. By the
symbol "o" we generally mean composition of mappings,
i.e., Dyow is the mapping defined by

Damig) = D (7(g)). (4.8)
Thus, Deem is indeed a real matrix representation of
SU(2) (since D, is a real matrix representation of 50(3)).
Furthermore, PoT is an operator representation of SU(2)
on the space V. The tensor-power-of-tensor-product
mapping [(J’un)‘giﬂ']@N is the operator representation of
sU(2) on (48 28N defined by

[ @em)@MEN (g) - (Pinig)eTig) P

for all gé Su(2). (4.9)

Returning to the full Hamiltonian (3.6), we recall Lhat
JQ4II had a symmetry group (C,J) with €< 0(3) and J defined in
(4.2). Our goal is now to construct a symmetry group for ér

which as far as possible "contains" this G-symmetry as well as

the SU{(2)-symmetry of the term (3.5) just established.
Contemplating this requirement rather naturally leads one to
* L] *
looking for triples (G ,n,E), where G is a group and n: G * 0(3)

-*
and £: G =+ SU(2) are homomorphisms such that

@y omey - oy
(ii) D, (n(g)) = D, (W (E(g)))

for all g € G*, Togay Dl° n - DlOIIQE-

&
For such a triple, (C*, [(Pon )@ (ﬂ;E)] N) will be a symmelry group
for A

The idea behind (i) and (ii) may be illustrated by

the following diagram:
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—

(K= u(2) (4.10)

4
v

The mappings n and & are going to help us represent just
one group, namely G*, in orbital space as well as spin space.
We know that if g¢ ¢ with n{a)eC, then P(n(q)) @ will
commute with J{o+v' irrespective of what the operatur@is
(see remarks following (4.2)) and P(n(g}) will transform
the set (& Ey £.) by the matrix Dy(n(g)) (see (4.3)).
We also know that TT(E(g)) will transform the set
(/.\x Ay AZ) by the matrix D;(w(£(qg)) (see (4.7)). So if
(ii) is satisfied, we are again in the situation that we
have an operator representation (Pen) of our group on the
orbital space which transforms 1 according to a certain real
matrix representation (Dyen) and an operator representation
on Lhe spin space (ﬂzﬁ ) which transforms s according to
the same real matrix representation of the group; thus the
arguments of Appendix B are again applicable, and the
above assertion about the operator representation
[(Pom)@ (lT»z)]@" of G on (\f°®(:2)®N follows. Require-
ment (i) just ensures that we do not loose any of the G-
symmetry (including possible improper rotations) in con-

structing G and connecting it to the orbital part of the
problem by the use of n.

We shall now demonstrate that one may, in fact, construct such
a triple (G*,n,gl for any group GZ0(3). We shall distinguish
three cases and in each case define the group G'i and the homo-
morphisms nand g explicitly. Every time we shall then prove that
conditions (i) and (ii) are satisfied. Readers who are only in-

. *
terested in the structure of G may skip the discussion of the

three cases and go directly to the subsequent summary.
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Case 1. Supposc G £ S0(3), i.e., G consists only of proper
rotations. Here there is an obvious solution: We put ¢ oatin),
whereby we mean that - {g € SU(2)| n{g) €G}; we definen by
n(g) - n(g) for g ¢ G*; and we define £ by E(g) - g for g € Gl

[To see that the triple (G*,n,E) hereby satisfies (i)
and (ii), observe thatn(G') =7 (G') =7 (m (G)) - ©

(because m is surjective) and that D,(n(g)) - D (n(g)) -
D,(n(E(g))) for all g € ¢" (because € (g) - g).)

Case 2. Suppose next that € €0(3) with -L € G, that is,

G contains the inversion -E. Put G, - GnS0(3), the interscction
of G with S0(3) or, alternatively, the subgroup of G consisting
of only the proper rotations. Then G is the direct producl of G
and the subgroup {E,-E} of order 2.

Since D, has the property that D, (RS) - D (R)D,(S) - D, (R)
for R € G, and S €{E,-C}, it is rather natural to put here

* * *
G =« 6, x{E,-E}, to put n(g,S) = n(g)S for g € Gy and Se{E,-L},
*
and to put £(g,S) = g for (g,5)¢ G .
[Mote that G: is defined because G, belongs Lo case 1.
For a demonstration of Lhe assertion regarding the direcl
product structure of G, see Appendix C.
1t is readily verified that n, defined in this way, is
X

a homomorphism with property (i). And if (g,8) €C , we

have D,(n(g,S)) - D (n(g)S) = D (n{g)) = D (n(&(g,S)))

so that (ii) is also satisfied. ]

Case 3. The final case is that of G being a subgroup of
B(3) with GE S0(3) and -E € G, i.c., G contains improper rota-
tions, but not the inversion. We consider the set G' -
{(det R)R|R €G} which is a subgroup of 50(3) iscmorphic to G; an

isomorphism is ¢:G~+G' defined by $(R) = D, (R) - (det R)R.
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We then put ¢ = (¢")*; define n by n{(g) = ¢"'(n(g)) for
all ¢ € G ; and define £ by E(g) - g for g€ G .
[ Regarding the isomorphism of G and G', see
Appendix C. Clearly,n will be a homomorphism with
n(€) - $mET (CH) = vHE) = 6,

using that m is surjective. To check (ii), observe
that

D(n(g)) = D(p " (u(g))) = D(n(g)) = D(n(E(g)))
for all g € G, because D((R)) = D(R) for all R € G
and thus D(P YR)) = D(R) for all R& G'. ]
In practice,one will usually not need to operate explicitly
with the homomorphisms n and £ . Let us therefore summarize

*
just the definitions of G 1itself suggested in the three cases:

*
(1) 1f G is a proper point group, G is defined to be =7 (G),
where W is the homomorphism from SU(2) onto SO(3) introduced in

Proposition 2.

(2) 1f G is a point group containing the inversion and with

proper rotation subgroup G, , i.e., if -E€G and G, = {R€ G|detR = +1],

* x
then G is defined to be Lhe (outer) direct product G, x Sz, where

6, is defined in (1).

(3) 1f € is an improper point group which does not contain the

inversion, g is defined to be (C')*, where G' is the proper
point group {(detR)R|R € G} isomorphic to G.

For each group G € 0(3), the group G* thus defined will be
called the double group of G (or the spinor group of G, cf. [ 6,
§§6.9 and 6.11]). This terminology will be justified in Chapter 5.
Definition (1) is that of Opechowski [ 2], and all three defini-

tions coincide with those of, for example, [&4, Secc.5.1];
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[6, §§6.9 and 6.11]); and [8, Sec.16]. In cases (1) and (3),

the double groups are groups of 23X 2 matrices.

Table 1 lists the resulting double groups for the improper

point groups.

Note that within the present framework Lhe definition of
double groups of improper point groups derives in a natural way
from the pseudo-vector character of the orbital angular momen-
tum. Thus we do not have to introduce the device of an even
(gerade) "intrinsic" parity of spin functions (cf. L6, §6.9]1;
(8, Sec.113; [9, p.140]), a concept which is rather confusing
because the spatial rotations (i.e., the 0(3)-elcments) - espe-
cially the improper ones - are nol in an obvious way represent-
able on the spin space Cz. We point out thal isomorphic point
groups may according to thedefinitions suggested have non-iso-
morphic double groups; this is not unreasonable since iso-
morphic point groups may well have differcent physical signif-
icance, i.e., a different rclation to Lhe orbital angular momen-

tum operators (Table 1 gives examples of this situation).

Remarks.

1°  The reader may be wondering whether one could obtain
an even more satisfactory treatment of the improper point
groups if one could replace the homomorphism W of Propo-
sition 2 by some homomorphism covering the whole of 0(3).
One might, for example, ask if there is a homomorphism

from U(?) onto 0(3),i.e., whether il would help Lo relax
the condition that the 72X 2 unitary matrices have decter-
minant +1 as in SU(2). [xtending Trdefined above in the
natural way to U(2) gives still only SO(3) as the image,



- 45 -

i.e., one cannol "hit" the improper rotations: and it ac-
tually turns out that the question asked can general-

1y be answered negatively: Suppose w' was such a homo-
morphism of U(2) onto 0(3). There is a homomorphism of
0(3) onto the group { 1, -1}, namely, the irreducible rep-

resentation s A defined by
§,(R) = detR  for R € 0(3) .

Some clement g of U(?) would by the composed homomorphism
y - S, ' be mapped onto -1. However, it is easily shown
(exercise!)that any matrix g in U(2) has a square root in
U(2), i.e., a matrix h such that h? - g. We would then
have

-1 =0 (g) = (h?) =g (h)?
which is impossible since Y(h) is either 1 or -1.

On the olher hand, we are not Implying that one
could not develop a different theory which did not involve
2 x 2 matrices at all (or involved them in some other way
than done here). This is a separale problem; our goal
here was specifically to explain how the above-defined
double groups naturally arise in the context described.

“ The construction of the double groups discussed as

2
cases 1-3 above may be described in a maybe more unified
way by starting with the particular case G - 0(3). We

get Lhe situalion

o - su@)x S,

n/ \:‘ (4.11)

0(3) SU(?)

with n and £ defined as in case 2, and using that 50(3)* E
SU(2) by case 1. Then for any group G & 0(3) we define

C* = n"'G) and use as M and § for Cl the restrictions to
C” of nand & in (4.11). The reader may think over that
in this way we may represent the most general situation by

the following diagram:
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¢S su(2)x 5,
n 3 (h.12)

¢ S0(3) (6N S0(3)) " S su(2)

with (G n s0(3))" = m7(CnSO(3)) .

3°  We mentioned in Section 3 that (3.4) is not the most
gencral form of Lhe spin-orbit coupling operator. In the
present context, the question which arises is whether the
double groups as defined here are still symmetry groups if
we use one of the more general forms of the spin-orbit coup-
ling operator. If the operator sctl is replaced by an
operator set (Gx,c;,o;) proporticnal to Vl¥«p [e.q.,

26, Sec.3-3; 27, Chap.9; 29], it scems plausible that

the transformation property
-1
P(nig) A o )Pin(g)™ = (@0, @10, (n{g))
for all g ec” (4.13)

(cf. discussion following (4.10)) will be preserved, con-
sidering that the potential U has G-symmetry; but we have
not worked out a formal proof of this like the one given
in Appendix A for 1. For the approximate form discussed
by Misetich and Buch for application in ligand-field theory
{32; see also 34, Sec.10.45)a similar remark could be madec.
In purely symmetry-based ligand-field theory, one simply

assumes the spin-orbit coupling operator to have the same
symmetry as (3.4) (see [33, Chap.6] and Chapter 6 below)

so that the above-defined double groups by definition

are symmetry groups for the Hamiltonian.
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5. General properties of double groups.

We shall restrict considerations in this section to sub-
groups of S0(3} and their double groups. In this way we cover
cases (1) and (3) [see end of Chapter 4]; information on
double groups falling in class (2) is obtained by using the
direct product structure C: ¥ 5, and the scparate properlies

*
of G, and S5,.

5.1. Introductory remarks.

Once one has accepted the definition of double groups of
preper point groups given above, Opechowski's exposition ([2];
sec also [4, Sec.5.1]) can be consulted for information on these
groups. [n particular, one finds there thecorems concerning
the not entirely trivial question of the conjugacy class struc-
ture of the double groups. There is no need to go through these
considerations here, but we do point out a few important general

properties of double groups in Section 5.7.

For practical applications, however, one will often just
need the character table of a given double group. Such charac-
ter tables arc readily available ([6, App.2; 10; 11; 12 ]; see
also historical remarks in Chapter 7), although not always
completely free of error. The tools needed for a more quantita-
tive application of double groups, vis., explicit matrix repre-
sentations and corresponding coupling (Clebsch-Gordan) coeffi-
cients and 3-T symbols, are also increasingly becoming available;
sce [23]. This whole apparatus may for many purposes be used
without a delailed description of the individual double group
elements, their mutual relations, their distributions on the

conjugacy classes, and their relations with the elements of
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the "single group". However, for such more detailed discussions,
4 suitable parametrization of the point groups and their double
groups may be desirable, and we therefore give this aspecl

some attention in Section 5.3.

5.2. General structural features of double groups.

Suppose G is a subgroup of S0(3) and ¢* - Teey e SULE)

*
is its double group. Then G has the following property:

»*
The group {1,-1} is a normal subgroup of G , and the guo-

tient group R O isomorphic to G. Thus if G is finite,

¢ is also finite and its order is twice that of G.

This property justifies the term "double group".

Note that we can not in general conclude from this Lhat
G;E has a subgroup isomorphic to G. In this sense the formulation
Lhat C* is an "augmented group" (ecf. Section 5.3) is unfortunate;
however, it would be mathematically correcl to say that ¢ is
a4 central extension of {1,-1} by G [4, p.127; 35, Chap.7],
hecause {1,-1} is containcd in the center of Gl and

¢ 711,-11 =¢.

To have a specific example, we have listed Lhe clements of
the dihedral double group D: in Table 2. Tt is gquite evident
that D:- does not have a subgroup isomorphic to Dy, because
0, has 3 elements of order 2, whereas there is only one such
element (namely, -1) in D;. [ We have given in Table 2 also the
character table of D; together with thal of the dihedral group
D,, because these two groups are a nice example of non-iso-

morphic groups having the same characlter table. ]
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On the other hand, in Section 5.3 we shall see that the
*
double group Cn of the cyclic group Cﬂ is isomorphic to C2n for
n = 12,3 ...; and since c2n has a subgroup isemorphic to Co we
*
conclude that there are some cascs where G has a subgroup iso-
morphic to G.
All the above mathematical statements are casily proved

from the definition of double groups. The reader may further

convince himself thal a subgroup of SU(2} is, in fact, the

double group of some subgroup of S0(3) if and only if it

contains -1. A finite subgroup of SU(2) is then a double

group if and only if it has even order (to see "if", use that

a group of even order has at leasl one element of order 2 and

that the only element of order ? in SU(2} is -1). For further

information on particular double groups, see the references

given in Chapter 7.

There is a very important remark to be made concerning dif-
ferent malrix forms of a given "abstract'" point group. Relative
to a fixed coordinate system, we are of course free to choose
the defining axes of the symmetry operations in the point group
and thus may obtain different (but of course isomorphic, actually
even conjugate,cf. Appendix D) matrix versions in 0(3) of the
point group. These will in genecral give different concrete double
groups, but luckily these are also isomorphic (and even conjugate).

*
We prove this in Appendix D. Thus, looking again at Table 2, D2
is not necessarily the particular subgroup of SU(2) given there,

but it will always be a subgroup of 5U(2) conjugate to that one.

5.3. Parametrizations of the double groups.

Any matrix g € SU{2) may be written
o -B
g - (5.1)

B a
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where a and B are complex numbers with [a[*+ |8 - 1 (and any

such matrix belongs to SU(2)).

We shall need an explicit description of the homomorphism

m: SU(2) +~ SO(3) introduced in Proposition 2 (Chapter &). If

*
g is given by (6.1), then )

Fla?+52-8%- 821 -ila?-a2-87.+82] aBiak
wig) - [4la?-a% 4 82-82]  Ila?.a2+82+B2) ilaB-aB] | (5.2
~(aB + &B) ilag - A ] lal2-18]2

The derivation of formula (5.2) is straightforward; for example,
to obtain the sccond column, calculate

BN _ 7/ iof -ia -ia® - iB?
o ) L ia? e (B? -iaB + {aB ;

g = %[uz- <R Bz]ox + ;— [a?i a? +8%+ Ez]oy velap - &B]oz.

One could of course now parametrize SU(2) and its sub-
groups simply by the pairs (a,B) (which arc equivalent to the
Cayley-Klein parameters [37, Sec.4-5]). However, as is obvious
from (5.2), these paramecters are notl useful for discussing the
relation between g and w(g). We therefore now prepare to in-

troduce another parametrization of SU(2).

Since |w]? ¢ |B|? - 1, it is not unnatural to put
a| - cosw and [B] - sinw with 0 S w = g . Then a-: |a]etX .
etX cosw for some real x with 0 < X < 21 and B = |B|e‘£

% When looking up formulae like (5.2) in the literature, e.g., the ref-
erences given after Proposition 2 in Chapter 4, one should be aware that
phase differences may arise for various reasons. For example, in [15%,
Sec.?9], one uses -ay instead of oy and thus gets a sign change 4 places in

the matrix tn (5.2).
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e'gsinw for some real & with 0 < £ <?n. 1In Lhis way g becomes
the matrix

e‘x e—"gsinw

;
ELE

cosw =

sinw e~ X cosw
e-t.(f.-)(lIZ 0

0 e HtE-x)/2

LHEX) /2 0
e-£(£+x)/2_
(543

cosw -sinw

sinf cosgEJ\0

As will be clear immediatcly below, it is convenient to rename
the parameters in (5.3) by putting 6 - 2w, ¢ - E-%, and ¢ = -(E+%);

we Lhen get

et/ 005%9 —sin%ﬂ e_“w'? 0

g(9,8,¥) ; | ;

0 e“p”2 sin-;'e 005%6 0 e“w?
eiL(w*w)"zcosgﬂ -c‘L(wnw)” sin%@
et(‘?-\lﬂ)/Z sin;-B el(cpull)l? cos%ﬁ

with 0 & 8 = n; 0= < 21 0= ¢ < 4m. (5.4)

We have contracted Lhe parameter interval for ¢ from -2m < @ < 27

to 0 =% < 2?1 since for any ¢ between O and 27 we have
g(e,0,b+2m) for 0 =Y <2

g(¢-2m,0,0) = -gle,0,¥) - o 05:5)

glo,0,p-2m) for 2m < § < 4w

Now since m is a homomorphism, we have

n(gla 8,¥))
P-iw? 0 c—ilb/&' 0

eiwz

cus%ﬂ -sin%e
) w( n(

= m( :
0 e“"” singe cos—;-e Q0

). (5.6)

Using (5.2) gives
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emt®l2 cosg -sing O

w( ) = sin® cos® 0O - R(9,0,0); {5 7a)
0 et ?/2 0 0
cos% ] -sin%e cos g 0 sing

m( X = 0 1 0 = R(0,0,0); (5.7h)
sln% 0 005%9 -5ing 0 cos#
e-iWIZ 0 cosy -sind O

7 ) = [ siny cosy O R{O,0,¢). (5.7¢)
0 ei¥/2 0 o

Evidently the matrices R{¢,0,0), R(0,8,0), and R(0,0,0) deflined
in Egqs.(5.7) are the matrices of, respectively, an anti-clock-
wise rotation around the 7 axis through an angle ¢, an anti-
clockwise rotation around the Y axis through an angle 0, and an
anti-clockwise rotation around Z through an angle V. Thus

)

#*
(@, 8,0) are tuler angles ’ for the rotalion with matrix

ni(gle, 0,0)).

Clearly the parameters ¢,6,V are well suited for describing
the relationships between clements of a subgroup G € S0(3) and
elements of its double group ¢’ o osu(2). Suppose one has an
element R € G. Then R can be written - not necessarily uniquely
as R(g, 0,%) = R(¢,0,0)R(0,8,0)R(0,0,¥) with 0 = ¢ < 213
0= 0=m; 0=y <27, Exactly two elements in o correspond
to R, namely, g(¢,0,¢) and -g(op,0,¥) = gl(¢,0,%+2m); that is,

T maps exactly these Lwo elements of C* onto R. One might then

1 *
decide to designate g(¢,0,%) as R and glg,8,0+2m) as -R .

) Therc are various definitions of fuler angles. Ftor others than the
present one, seel[ 7, Sec.7.1; 22,pp.1068 ff.; 36, Chap.5 and App.D]; for
comments on the literature and comparisons of conventions see (37, Sec.st-4
and 4-5; 38; 39]. Tor the connection with other parametrizations, sce,

e.q., [40].

1
-
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Such a convention has the advantage that one can name the
elements of the double group using the symbols for the geometric
rotations to which they correspond. It aveids the difficultiecs
associated with the "classical™ double group notation ([1]; or see
tables like those in [6, App.2])}, where one insists on representing
half of the elements in the double group by symbols identical to
those of the "single" group elements. Thus the problems pointed out
by Altmann [18a] disappear; for example, for any element R € G,
the relations

RY(RY)

I
-

(5.8a)

* *.
(-R )(-R ) =1 (5.8b)
are - trivially - satisfied (although we do not necessarily have,
- i, A

say, R (R"") = 1).

0f course the convention for notation suggested here depends
on how one chooses [Culer angles to describe the rotations (cf.
legend to Table 2). However, this is no worse than the situation
in the point groups themselves, where e.q., the designation of

'oor as GY, as opposed to

a rotation as C;, as opposed to Ci
&Y or C;, depends on having some sort of a convention regarding
orientation of rotation axes and positive and negative sense of
rotation angles. Thus the description of the conjugacy class
structure of the double groups (one of the problematic aspects
mentioned in [18a] ) is no morc difficult than that of the point
groups. [Consider, with reference to the C; and €C; examples
above, the groups T and Dz; see the case of Dg in Table 2].
In fact, the example given in connection with Table 2 rep-
resents the only situation with trouble arising from non-

uniqueness of the angles (9,8, ). The angles (¢,98,V)

asused here, with the parameter intervals stated in (5.4),



- 54 -

are unique except when 6 = 0 or © =7 ; this is casily scen

from the matrix given in (5.4). For our notation conven-

tion, only 8 = n gives problems; here, ¢ and | may be

changed arbitrarily as long as ¢ - { is unchanged modulo

4m. A further convention might be, then, to take the

minimum value of @ for the FTuler angles of the given rota-

tion before going on to g(¢,8,9).

A note is in its place here concerning the order of clements

*
Generally, R and -R may be of the same cven order or one of
these double group elements may be of an odd order n and Uhe other
*
one then of order 2n. Examples: if Cy = R{(n/2,0,0), then C4
*
g(n/?2,0,0) and -Cv - g(m/2,0,27), and bolh are of order 8; if
¥ ¥
Cs - R(27/3,0,0), then €3 = g(27/3,0,0) and -C3 {(?%/3,0,2w), the
first of Lhese being of order 6 and the other one of order 3.
X

On the other hand, had €3 becn R(47m/3,0,0), we would have had C3

*
to be of order 3 and -C3 to be of order 6.

We close this section by using the above formulas to cxamine
L
the double groups Cn for the cyclic groups Cn R & My 2Py s 5 sl

Suppose Rm € S0(3) denotes a rotation around the / axis through

an angle @ with 0 = ¢ < 2w, that is, Rw = R(9,0,0) [bq.(5.7a)].
Then, with the notation of kq.(5.4),
. e-i¢lz 0
REP = g(9,0,0) = . Cf@/? . (:5.:%)

Now Ce = {R¢|0 < ¢< 271}, so
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x

Co ={R,[0= ¢ <2n}b U (-RS [0S ¢ < 2m)
JICS L7 BN e b(9124M)

= { < i
L elcplz)lu et Bl B e,._(w?m)ioSwzv}
-i{a
e 0
= {f fa)l0Sa<an), (5.10)
@

which is evidently isomorphic to C itself, that is, we have estab-

lished that

Co = G- (5.11)
If n is a natural number, we have C_ - {RW|zp = p2n/n;
p=0,1,...,n-1 and one may analogously computc Cn * to be
-ta
¥ /e 0 AY
. {‘\ ia/[ct - p?%/2n; p = 0,1,...; 2n-1} (5.12)
0 e
so that
¢ % = (5.13)
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5.4. Basics of the representation theory of the double groups.

Information on Lhe irreducible representations of the double
groups may of course be oblained from character tables as those
referred to above (Section 5.1). In [23] we give explicit irreduc-
ible matrix represcntations for all non-commutative double groups,
adapled to various group-subgroup hierarchies (given mostly by
writing the matrix representatives for a generaling set ol group
elements); [18blgives irreducible matrix represcntations in full
for the particular case of Lhe double group D;,

We shall, however, find it convenienl Lo give a few basic
facts in this section. These are all easily derived rrom the defi-
nition of double groups.

We discuss here just the case of o group G & S0(3) and its
double group ¢ < su2).

The irreducible representations of Gl may be divided into two
classes: (1) those which map 1 € ¢" as well as -1 € G° Lo the unit
matrix (and which thus assign the same matrix represcentative Lo g
and to -g for all g € Cl); and (?) those which assign different
matrix representatives to 1 and -1 (and which actually then assign
opposite matrix representatives to g and -g for all g € C*). The
irreducible represcntations of type (1) are called ordinary or

* *
vector or lensor representations ) of ¢ , while those of class (2)

%
In view of the fact that a vector representation I' then has Lhe property

r(-g) = r(g) for all g € ¢" and a spin representation I' the property ['(-g)
-f(g) for all g€ G., it does not seem unreasonable to call vector represen-
tations even representations and spin representations odd representations as
is done in [13, p.101] and [14, p.162]. However, in view of the facl thal
these terms have been used in connection with a quite different classification

[41], we have chosen not to cmphasisze them in the main text here.



- 57 -

Another point is that the definition of spin representations might seem
to imply that such representations are faithful (injective). That this is
not necessarily the case can be seen by studying Table A8 in [6, App.2]
(the irrep E™ of De 1is not Faithful).

-

are called extra or spin or spinor representations ) of G . A
* L]
vector irreducible representation I' of G corresponds to an ir-

reducible representation I' of G by
* *
I (g) - I'(m(qg)) for g € G . (5.14)

In fact, all irreducible representations of G arise in this way.
For spin irreducible representations T* of G* there are no corre-
sponding representations I' of G satisfying (5.14). These obser-
vations justify the terms 'ordinary' and 'extira'.

For the group SU(2) itself, the irreducible representations
are Dj with j - 0, 1/2,1, 3/2, ... and diij = 25 + 1 (the dimen-
sion of Dj); those Dj with j = 0, 1, 2, ... arc of vector type,
while those with j = 1/2,3/2,5/2, ... are of spin type [4, Sec.5.1;
7, Chap.7; 14, Chap.15). For j = 1/2, one can in particular

choose Lhe matrix form

8 o6, - gle,0,0) (5.15)

with g(¢,8,¢) defined in (5.4). With this dcfinition,eﬁ[%] is
the so-called contrastandard from of D]/; [36]. The representa-
tions T and ™ in Chapter 4 are of course equivalent to Do
As for notation for the irreducible representations of the
rest of the double groups, we refer to the character tables men-
tioned in Section 5.1 and to [?23]. For double groups of class (2)
[see end of Chapter &], which are of the Lype Co*x Sz, it would

seem hatural to use Lhe subscripts 'u’

(ungerade) and 'g' (gerade)
in connection with the symbols for the irreducibles of G:,

parallel to the convention for G = G, x Sa itself.
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6. Using the double groups in ligand field theory.

The developments in Chapter & led to the definition of
double groups as symmebry groups for Hamiltonians of the form
(3.6). To act as such, the double groups - themselves defined as
summarized in items (1)-(3) in Chapter 4 - are represented on the

®
space (V, @ c?) N, introduced in Chapter 3, by means of the oper-

ator representation [(Pon) & (TTOE)]®N (ef. {(4.10)).

In the present chapter, we shall illustrate this construc-
tion by discussing how double groups are used at the qualitative
level in ligand-field theory (ef. Remark 30 at the end of Chap-
ter 4). We are not aiming at the derivation of any new resulls
herc; rather, wec want to explain, using notation and terminology
from the preceding chapters, the mathematics underlying a well-
known application of these groups and concepts related to this
application (such as Russell-Saunders and j} coupling).

We consider it outside the scope of these notes to deal
with any specific calculations involving spin-orbit coup-
ling. What we hope is that Lhe reader may end up having

the feeling of being on firm ground with respect Lo

concepts and definitions when he reads the literature

concerned with concrete applications of double groups.

We start again by considering the operator 9&. Chapter &
suggests as a symmetry group for én the pair
(0(3)", [(Pon) ® (Mo£)1® M), where 003 ™= su(?) x $,. In fact,
however, since the action of éﬂ in the spin space is trivial, we
may enlarge the symmetry group to the direct product
(0(3’[ 50 0(3)*,{(35n) -2 (nlg)]®N),where the action of the group

on the Hilbert space now is the outer tensor product, that is,



T

[(Por)® (Tet) 1™ (g1,0,) = [(Ponley)) @ (Toela NN
for all g,,q, € 0(3)". (613

If we add Lhe term Uwith point group symmetry G& 0(3) to %,
the group 0(3)* x 0(3)* with the above representation is not a
symmetry group any more, but the group G* X 0(3)* is. Adding

the spin-orbit coupling term lowers the symmetry still further

not only to G* b C*, but to the diagonal subgroup G*Eﬂ C* =
{(g.q)|g € G*} (because the elements g1 and g2 in (6.1) now have
to coincide to make the scalar product 1+s transform totally sym-
metrically). The group C*E ¢ is clearly isomorphic to G. If
we instead add first the spin-orbit coupling, we get at this in-
termediate level the symmetry group

003) = 0(3)" - {(g,9)|g € 0(3)"} = 0(3)1; subsequent addition

of Uthen reduces the symmetry Lo G*Eg C*, as before. We can sum-

marize these hierarchial relations in the diagram

He

003" x 003)", [(Pon) ® (To&) TN

N
b .
+'U‘/ \1’5111 8¢
ie

¢ x 03 003 ® o3 = 03 (6.2a)

N
i B— £ily 51\ /U
=1

G‘EC* -:C.l
N
Y
H= H+ U+ 2 gy1esy

i-1
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if we disregard improper rotations (so that now G < S0(3))

and furthermore just write the groups involved:

Su(2) X su(2)

¢ x su(2) su(2) B su(2) = su(2)

N
cX=®e” =

*

When analysing a system with respect to the group

SU(2) x SU(2), whether it is a symmeltry group or not,

(6.2b)

one has to

@
decompose the representation [(Pem) ® (oM™ ™ into irreducible

representations.

are (see, e.g., [7, Corollary 6.2]) of the form D, ® D

L

52

Irreducible representations of SU(2) x SU(?2)

where

L and S may take on values 0, 1/2, 1, 3/2, ... (cf. end of

Sec.5.4).

25+1 25+1

A subspace of V transforming as DL & DS is usually

designated L or DL and is called a mulliplet [the dimen-

25+1

sion of L is dimD ding = (2L+1)(25+1)] . If the decomposi-

L

tion of V into multiplets is achieved by regarding
[@om) ® (MetN®N as [(Pom) @T 1™ ® [(T® (To0) N, where

J in both cases denotes the identity operator, and decomposing

the first factor into irreducibles D

L and the second factor into

irreducibles DS’ the scheme is called L-S coupling or Russell-

Saunders coupling.

B

forming as D

@

An actual "coupling" takes place when one subduces the

Dy to SU(2) D su{2), obtaining as usual

D & D = (] D:} &
3 = |L-s|

(6.3)

The total resulting decomposition of V into subspaces trans-

J

,-representations of SU(?)E@EHH?) may be obtained
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also by decomposing [(Pom) ®(TT°E)} into irreducible represen-
tations Dj of SU(2)BR SU(2) and then forming the various N-fold

tensor products of these. This is the j-j coupling scheme.

When U is present in the Hamiltonian, we get the situation
represented in the lower left of diagram (6.2b). Irreducible
*
representations of G x SU(2) are of the form I'® DS’ where T is

*
an irreducible representation of G ; multiplets are written

* *
i Upon subduction to G G , the direct product

*
r & (DS ¥+ C ) is decompoesed into irreducible representations of

* * k]
G (here US + G means the restriction of DS to G ).

Example. By way of illustration, let us consider a system
deseribable as "a single d, electron in octahedral symmetry'.
This means that N=1 and that \,is a five-dimensional space
transforming under the representation P of S0(3) (or Pom
of SU(2)) as Dz and, finally, that G = 0, the octahedral
group. Sincei?i as noted at the end of Sec.b.4, is equiv-
alent to D; ,2, the SU(2) x SU(2) multiplet characteri-
zation is 2D, where D is the speclroscopic abbreviation

for Dz. T1f we follow this multiplet down through the
diagram (6.2b), we get

2D (L-E. Dz ® Dl /2)

T *E D32 ® Ds sz (6.4)

N g

Emg U'e L'

In (6.4), we have used Griffith's notation for the
irreducible representations of 0‘ (see [ 6,App.?2 ], where
also the correspondence with Bethe's notation [1] is
given). The last line may be obtained from either the

subduction formulae
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D32 (5U(2)) + U'(0)

. (6.5)
Ds 2 (SU(2)) > E"w U0 )
or the fact that D1, (SU(2))+ E'(0") combined with the
tensor product relations
T:® D1z v 0°) - T, ®E' - E"& U
* (6.6)
E®@(D;,2¢+0) = E®E'" = U
*
In O .

The reader may now compare (6.4) with the discussion
of the same kind of system in any standard text
(e.g., [33, Fig.6-11).
We have an important final remark concerning the application
of double groups as presented here. Suppose G S S0(3). Then for

all g € G S SU(?) we have
((Peom ® (8)1®N (L) = [Pn(-g)) & T-g)1 >N
- [Panig)) ® (-Tig»n 1™ (6.7)
- CONM@Pom ® (o) 1™Mig).

This shows that if N is odd, only irreducible representations of
spin type of ¢" occur in the decomposition of V under the action
of [(Pom) @ (Te E)]®N; if N is even, only vector representa-
tions occur (Sec.5.4). Since the latter representations are
those which can be factorized through G, i.e., which correspond
to representations of G through the prescription (5.14), one may
for even N think of the analysis as performed in terms of G in-

stead of G‘.
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7. Concluding remarks; comments on the literature.

To summarize, we have demonstrated that within the framework
set up in Chapter 2 regarding the application of group represen-
tations, it is perfectly rcasonable to consider the double groups
(as well as the point groups) as matrix groups, and we have dis-
cussed in detail how to suitably define double groups for proper

and improper point groups.

In this way, double groups are groups and thus become just
as simple to use as, e.g., the point groups and the symmetric
groups; character tables, tensor product tables for irreducible
representations and tables for descent in symmetry, calculated
once and for all, are available (or the latter tables can be
worked out using the character tables) and can be applied to
classification of energy levels, derivation of selection rules,

etc., justl as for other groups.

With respect to literature introducing the double groups for
such applications, the references given here do not purport to
make up an exhaustive collection; rather the particular exposi-
tion choscn here dictated the selection of references. There is
general agreement that Bethe's paper [1] represents the first ap-
plication of double groups. It may be of inlerest to note, how-
ever, thal the double groups were known to mathematicians long
before 1929. The standard reference from the end of Lhe last

century would be Klein's Ikosaedervorlesungen [42], bul the

double groups scem to be traceable at least back to 1878 [43]
and probably even further [44]. In 1899 Frobenius gave the char-

acter tables for Lhe tetrahedral, octahedral, and icosahedral
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double groups [45] . The classic by Miller, Blichfeldt and Dick-
son [46], referred to by Opechowski in another conlext [2, p.554],

also discusses double groups (Chap.X).

The double groups have not ceased Lo have research interest.
Some scattered rcferences to more recent literature [17, 18, 19,

?3, 40, 47] may help the interested reader get into this ficld.

The double groups (or binary groups, as they are also
often called) furnish a rich collection of illustrations
of group theory and are often used as examples in the
mathematical literature (see, e.q., [48]: the quaternion
group, isomorphic to D: (cf. Table 2), pp.115-120, and
the tetrahedral double group pp.132-134; [49]: the tctra-
hedral double group pp.56-58; and [50]). In particular,
they have some interesting presentations, i.e., defini-
tions in terms of generators and relations [50].
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Table 1

Double qroups for improper point groups G

(6 € 0(3) but ¢¢§s0(3))

G contains the Inversion G does not contain the inversion
- -
G ¢ & G
- = - - * c
S, = Cl €y x5, ¢ C2 xCZ) Cih Cz (=Cy sz 2)
-
Cnh(n=2.¢b.6....) C“'xse(-Cznx Cz.'l Cnh(n=),5.7....) Czn(-tanftz“xt‘z)
¢, (n=2,3,8,...) o
- -
S"(n:2,6.10.---) cnlzxsz(-cnxcza Sn(n!'\\,s,l‘c‘,.-.) Cn (-Czn)
Pop(n=2,8.6,...) 0, "xs, 0. (n23, 8,7, au)l B,
. -
D"d(n:3,5.7...-) Dn XSZ Dnd(n=2.k,6,u-) DZn
- -
T T x5, T, 0
ol
Oh KSz
*
Ih 1 XSZ
*
Cay Dy
*
D"h D, x S2
0(3) SU(2) % S,

The fact that Cn‘ o CZn (the sign = meaning "is Isomorphic
to") is proved in Sec.5.3. Note that isomorphic point groups
may‘ have non-isomorphic double groups (S2 vS. C1h; CZh VS, CZv
[DZ is not isomorphic to C‘& sz, cf. Table 2 below];

Sn V5. Cn for n = 2,6,10,...).
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Table 2

*
The dihedral group D, and its double group D,

Elements:

D, - (E,c),cY, ¢t

= {R(0,0,0),R(n,7,0), R{(O,T,0),R(n,0,0)};

5 * X* * * ¥ *

i = [0, 88 0% el el 6% -8l)
A (4 0y /0 EN [0 —i) [0 -1y f 0y f-lo0y ol
N0 1,0 0 -1/,0E 0,0-0 07,01 0,01 07,4 i/,\0

Character tables:

- x¥ x* Yl vi Zi i*
D; {1} (-1} {ez ,-c2 } {€: ,-Cz } {Cz ,-CZ }
A 1 1 1 1 1
B, 1 1 -1 -1 1
B, 1 1 =1 ] A
Bs 1 1 1 -1 -1
E? 2 -2 0 0 1]
oy | 6l 05 fed el eliell  ookaed
Ay 1 1 1 1 1
Az 1 1 -1 = 1
By 1 1 -1 1 wi
B, 1 1 1 -1 =41
E 2 -2 0 0 0

0
-i/

k:

*
The elements of Dz are computed by formula (5.4) from the

Fuler angles chosen for the elements of D, and are named

according to the convention in Sec.5.3.

Note that changing

Euler angles for a given element of the point group may lead

to the opposite notation for the two corresponding double

group elements,e.g., if we regard C§ as R(0,m,7m), then

*

s

is

e
I

(o - [0 ¢
t 0/

% *
3 X ./
\ -i O) and -Cz s ;
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whereas if C§ is regarded as R(n,m,0)}, then

c} is(? ‘0} and »C’é* is F ‘6).

In the character tables, the notation of Griffith [, App.2]
is used.

The character table of the point group Dy is appended to

show the interesting fact that non-isomorphic groups may

have {in the obvious sense of this expression) the same
character table (to see that D, and Du are not isomorphic,
note, for example, that D:-has only one element of order 2,
namely -1, whereas Dy has 5 such elements). (The problem
of determining which groups are characterized by their
character tables has intrigued mathematicians; see, e.g.,
[511.)
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Appendix A. Transformation properties of the angular momentum

operators.

The purposc of this appendix is to provide a rigerous proof
of formula {(%4.3). (The present author has never seen such a proof
in the literature making use of this formula.) Apart from being
of interest in its own, such a derivation might serve as a start-
ing point if one wanted to set up formal preoofs also in the more

general cases discussed in Remark 30 at the end of Chapter &.

For an arbitrary function ¥ of Lhe variable r = (x,y,7), we
shall denote by w; w;, and ¢; the three partial derivates of ¥;

that is,
d
brxyy,z) = 570ix,y,21), ete.

We shall verify that for any element

R R R
XX Xy X7
R = R R R € 0(3) (A1)
¥x Yy Yz
R.x Rzy R,z

and any function | we have

[Py PRy - [detR(R L + R L + R L )1v; A=

yxty Rz
in this way we shall have proved formula (4.4), and the proofs of

the two other formulae embodied in (4.3) are of course analogous.

We start by calculating, by the chain rule:
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Ve s f2T0Re)) = WL (Reb2 (R x Ry + R_2)

s w;(Rr)g% % R g R _g]

yx Yy yz
1 a L -
& wz(Rr)g? (Rlxx " Rzyy : Rzz/)
8 51 Ry, ¥i(Re); (A.3)
i=X,Yy,Z
similarly, one obtains
3 = ) .
Ve o golé(Re)] = ). Ry bi@e). (A.4)
fo;y,l

Making use of these formulae, we get (starting with the

left-hand side of (A.2)):
Vor: [PR)LPR D Ipr)
. 3 3
= [PRY(-i)lys- - 2 ﬂ)]lﬂ“l‘)

- -i[PR)(y ) R¥i-z ) R WD I(Rr)

1271 vy
Iox,y,2 Jexsys2
= -a[deLR(nyx + Ryyy + R,yz) i R, ¥
i=xyy,2
- ' .
detR(R, x + Ry« R, 0) ¥ Ry b31(r); (A.5)
J=X3¥s 2
here we used that
R~ = (dctR)R', (A.6)

where T denotes matrix transposilion, so that P(R)y =

detR(nyx + R + Rzyz) and analogously for P(R)z. Multiplying

YYy
out the last expression in (A.5) gives 18 terms; collecting these

gives
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R R R R
Xy Xz Xy Xz
(-&) (detR)| (0-x e ® R T z)w;
¥y ¥Z zy zz
Rx Xz Ryy . z
+ ( Y x + 0y = Y 7) B!
R R R R, _ ¥
Yy yz zy Zz
RXV RXZ. o v R z
e x + [ YY YIly - 0.2 ) vl fee); (A.7)
Rzy zz Rzy 7z

using again (A.6) and the general formula for the inverse of a

matrix, (A.7) may further be rewritten as

(—i)(detﬂ)[(-szy + R Kz)W;

¥

+ (szx - Rxe)lfJ)'}

*(_Ryxx + Rxxy)wé ] (r)
= (-i)(detR)[Rxx(y bo- zxy;)
s Ryx(z. \IJ;( - X\Pé)

+ sz(x w; -y W;) lilr); (A.8)

clearly, the last expression in (A.8) is equal to the right-hand

side of (A.2), taken at r. Thus the proof is completed.
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Appendix B. A general observation concerning operator "scalar

products”.

The spin-orbit coupling operator defined in (3.11) and in-
vestigated in Chapter & is a special case of what one might call
operator "scalar products". The symmetry result we need in Chap-
ter & follows from the general discussion we shall give in this

appendix.

Suppose we have two Hilbert spaces Vi and V2 and a group G
with unitary operator representations T, of G on Vv, and 3; of G
on V; (see Chapter 2 regarding the concept of operator representa-
tions). Ffurthermore, let I be a not necessarily irreducible uni-

tary matrix representation of dimension d of G.

Assume then that we have a set X :(X.,....,XG) of operators
on Vi transforming as I' under the operator action of T and a set
Y = (yl.----.yd) of operators on Vz transforming as T (the

complex conjugate matrix representation) under the operator action

of 7: (cf. Eq.(2.4)). These assumptions may be expressed as
d

=1 _
ﬂT(R)XﬂT(R) . 1F(R)Y.YXY. for all RE ¢
.YV

nl

for each vy = 1,....,d (B.1)
and

d
-1 =
Tl Tom) ™! - YZ_I(R)Y"YyY" for all R € G

for each ¥ = 1,....,d. (B.2)

Under these circumstances the "scalar product” X:Y, defined as

the operator
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x¥=Xeolh . Xol, - ..... X 8y (8.3)
acting on Vi1 @ V2, will transform under the operator action of

the product representation ff; @ y—z as the totally symmetric irre-
ducible representation of G, i.e.,

[T R) @ T2(r)] (X+¥) [ Tor)" @ T(r) '] = Xo¥

for all R € G. (B.4)

The assertion may be proved by direct calculation using the

unitarity of the matrices T(R), R € G:
VR ec: [Tir)e T2(R) ) (x-v)[TuR) " ® T2(r)"']

d
E [?’.(R)XYT[(R) e [ﬁ;(my,{%m"]
1

Y:
& g $
= :\7, TR)yiyXyo ; @
y=1 y'=1

y If(R)Y"YyY")

’
Y

- |

=%

% ( % \

- " R T(R \ ®
2’1 .!‘1 \ [11” By H et XY' y‘r"
Y =1 Y~ Y=

There are various other more or less sophisticated ways
in which (B.4) may be proved, possibly enabling a better
"understanding" of the result. For example, let
W, = span{Xy ,....,xd} (i.e., the linear space spanned
by the operators + Y = 1y ¢eneyd) and
W, - span {yl,....,yd}. If W, ® W, is looked upon as the
space M(d,d) of d x d matrices, the action of 5} 69.7; on
W, ® W, is (see, e.g., [13, p.48]):
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VR €G: [T1(R) ©T2(R)I(W) = T(R)W I'(RY)
for all W€ M(d,d).

Since X*Y is represented by the unit matrix in M(d,d), it is
clear that it is a fix-vector under 7, @ 7.

The operator l-s fits well into the above framework. In Chap-
ter 4 we show that 1 transforms under Pon as the real unitary
matrix representation D; ¥ C* (the restriction to G* of the
Su(2)-irrep D) and that s transforms under TTo{ as the same rep-

* -
resentation of G (and thus, since D, is real, also as D;).

One may rewrite an operator of the form (B.3) by applying a
unitary transformation U leading to linear combinations

-
. = U X,
XT e YY XY
¥’
if one transforms the operators $H by the complex conjugate trans-

(B.s)

formation U, since then

' ' ! T hY
YxpeYs=Y (Yo x)@{ )0, Yu)
i L | Y

"

u__,0
il

/1
-1

3\
vy 7 Xy P Yy

Mg~
<~
=<

=i Xn¥ o
o Sy Xyt © yY.,

1
=< M~

e

The property that the two operator sets transform by mutually
complex conjugate matrix representations is preserved under this
kind of transformation. (lformally, the essence of the above is
of course just the well-known fact from linear algebra that a

unitary transformation preserves scalar products.)
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As an example, we may transform (fx,[y,f/) intoe the sel
(l;,lo,lgl) transforming as the contrastandard [36] form
9(1} of the irreducible representation D1 of SU(?) [cf. Sec.5.4]

and defined here by

by = '/—-g-ux il
L o~ & (B.8)
4=y 4 ‘/—f W, =idah

(see formula (9) in [24b]). Using the complcx conjugate trans-
formation on the set (ax,éy,dil gives Lhe sel (-4_1,4,,-41) so0

that the operator l:-s with these alternative operator bases reads

1vs = -4 @A + Loa -L. ® A (B.9)

Finally we wish to point out Lhat it is a convenicnt thing
that we did not assume irreducibility of the representation T
above. The operator sels 1 and s do transform, as we have seen,
as the 3-dimensional irreducible representation of SU(2); but
descending to a double group C*EZ SU(2), one may well find that
the representations spanned by these operator sets are reducible.
The occurrence of this phenomenon is of course geverned by the
subduction relations telling how D;(SU(?)) splits up into sub-

*
group irreducibles when restricted to G .
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Appendix C.
Any subgroup G < 0(3) which is not a subgroup of S0(3) be-

longs to exactly one of the following twe classes of groups:

(i) The inversion is an element of G, i.e., -E € G. Con-

sider the set G, = G n S0(3); being the kernel of that homo-
morphism from G into the multiplicative group {1,-1} which

maps elements of G into their determinant, G, is a normal

L
subgroup of G. The set {E,-E} is clearly also a normal sub-
group of G, and G, n {E,-E} = {E}. Furthermore, the product
G,{E,-E} is all of G, because any element R € G is either

in G, or, if not, can be written (-R)(-E) with -R € G

[+]

This proves that G = G, X {E,-E}.

(ii) The inversion is not an element of G, i.e., -E Q G $ S0(3).
Consider the set G' = Dy (G) = {(detR)R|R € G} £ S0(3),
where Dy is the matrix representation defined in Chapter 4.

The set G' is a homomorphic image of G, and since
VR € G: D(R) = E = R - (detR)"E=*E=R = E

(because -E $ G), the restriction of D, to G is injective

and G’ is a subgroup of S$0{(3) isomorphic to G.

Other authors have had occasion to consider other isomorphisms
between groups of class (ii) and "pure rotation groups" (S50(3)-
subgroups) than those defined by Di1; see [47] and references

therein.
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Suppose we consider two different ways of choosing the rota-
tion axes defining a given proper point group (with respect to a
fixed coordinate system). We then get the point group represented
as two different matrix subgroups Gi; € S0(3) and G:2Z SO0(3). We
ask what the relationship is between the double groups GL* and

Gz as defined in Chapter 4.

Now there will be a rotation R, connecting the two orienta-
tions of the defining axes of the point group so that Ci -
R‘,Ggﬁ‘;1 (i.e., G1 and G: are conjugate subgroups of S$0(3). Let
g, € SU(2) with w(g,) = R,, where ®w: SU(2) > SO0(3) is defined by
Proposition 2 in Chapter 4. We claim that Cl* = goG;g;l so that
Gl* and G: are conjugate in SU(Z2) (and thus, in particular, iso-

morphic).

*
For the proof, first note that m(g,G:2 go‘l) =
n(gc)ﬂ(Gz*)‘rr(g;l) = RQGQR‘;l = Gi1 3 this implies that

* * *
g,G2 go_lg Gi1 . Applying the same argument to go'lGl g, gives

-1

* 5 * *
go‘lGlgnE Gz, using that RQ'LGIRO = Gz, and thus G, & geGZ g,

* *
In all, we have g,G: go‘l - G, as desired.
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