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ABSTRACT

Ihree theorems are stated and proved which allow generation
of infinite number of singular graphs i.c. graphs whosc
adjacency matrices have no inverses. An observalion is
cited in relation to antiaromalic and non-kekulean hydro-
carbons. A fourth Lheorem is given which relates the
speclrum of the eigenvalues of the adjacency matrix to

the non-existence of an inverse.
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The importance of the inverse of Lhe adjacency malrix, ﬂ"
of a graph arose many ycars ago in connection of the rela-
tion belween resonance and 0 theoriesl. In part I of
this wnrk2 we showed the polential of the ﬂ_l matrix in
coding of chemical graphs. The problem is related to
important topics such as order, comparability and similarity
among a set of (chemical) graphs and Lhus allowing the study
of molecular properties from informalion obtainable from the
i_' matrix. The conditions necessary for Lhe existence of

dan inverse of a given matrix is Lhat the determinant of this
matrix docs not vanish i.e. it has a non-cero vulueB. In

this work we present three theorems by which one might
gencrate an infinite number of sinqular graphs i.e. graphs
whose adjacency malrices possess no inverses. A fourth
theorem is presented which rclates Lhe speclrum of cigenvalues

Lo the singularity of A .

Theorem 1

The adjacency matrix corresponding to a linear chain contain-

ing an odd number of vertices is singular.

Proof

We number Lhe verlices of the linear chain arbitrarily from
left Lo right 1, 2, .... , n, where n is the number of

vertices in the chain.

Then we perform the following row operation on Lhe determinant

of the corresponding A, By = r5 L R R where r,
is ith row. dy this opecration the value of det A remains
unchanged. Since the third an fifth rows are now identical,

then from a well known theory in algebra follows that det A - 0

hence Lhe original matrix A is singular.
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Corollarx 1

Theorem 1 allows the construction ol an infinite number of
singular graphs: Since the row operations involve only the

vertices with odd numbers \r}, rB, Poon maiEs 5 rn) substitu-
5

tions on vertices with even numbers will vield singular

graphs. Also, linking tuplets of "even" vertices will
introducc ones only in rows wilh even labels i.e. in r,, Ty
seees To e The resulting gragshs will be, also, singular.
Supposc, e.g., we have L9 i.e.
* * *
O—0—0—0—0—0—0—0—20

*
1 2 3 4 5 6 7 & §

L9

We are allowed to introducce ones between pairs (or higher
tuplets) of the even scet {?,ﬂ,b,&} e
fore (i

We shall have, there-

selections i.e. 41/(4=2)12' - 6 structures for (he

pair-wise selecctions. Thesc structures are shown below

* » e » * * *
b e
* * * * * » * x

However il dis clear that a =

= [ andl b = e Lherefore the net

number of pair-wise connections of "even" vertices is only

four singular graj;hs. It might be observed that the above
represcntations correspond to graphs of chemical interest,
¢.g. (c) corresponds to the lollowing cycloheptatrienc

radical:
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G

The ubove singuluar gra, hs (a—r) aiight be used to gencrate

anelther group of singular graphs with two additional ones in

their matrices. The resulting matrices might in turn be
used Lo generale other singular matrices anl so on. Fig 1

shows such grephs afler deletion of the cocuivalent ones.

Theorem 2

The adjacency matrix ol a cycle containing 4n vertices

(n = 15 @3 Fy «ws) dis singulas,

Proof

We assign numbers to the vertices of the cyecle in the natural
order of the real numbers starting at uny vertex. Let

J - 4n be the number of vertices in the cycle. We perform

the following row operations on the corresponding delerminant

e S S - ST o < saass * Py where m = J-=1. The

1 il m=72 m=t o)
resulting delerminant has rl = r3 whence the corresponding
malrix is singular. This proves the theorem.

Corollary 2

If we Jdivide the vertices of a Chn into two groups of
differcent parities one might easily generate graphs with
singular matrices by connceting vertices of identical
parities. The lollowing general types ol singular graphs

result from thecorem 2.



Fig 1.

Singular graphs on nine vertices gencrated from
graphs a-f by appropriate additions of two and

threeoncs to Lheir adjacency matrices.



kxamples of singular graphs which arce constructed

using theorem 2. The parameters r, s, t, u, v take values

of Ts 59 99 13,
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Theorem 3

= 2 4
The adiacency matrix of a wheel W4n+1
is singular.

Proof
Label the wvertices of the periphery of the wheel 1, 2, 3, .es,
4n while the central vertex is assigned the number 4n+1l.
perform the following row cperation: ry - rj + (rﬂ-Z) - (rj_4)
foames = Toj where j = 4n- . The re5u;ting determinant

will have zeros in all the enteqés of the first row;

whence the original A must be singular.

Corollary 3

Graphs obtainable by deleting edges connecting the central
vertex of Wanet to vertices of like parities are singular.
T.g., bheir AYs posposs 1o 1VEYrSes. Frig 3 contains

several examples of such types of graphs.

S 5
B B

Fig 3
Some illustrative examples of singular graphs generated

using theorem 3.
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It is interesting to observe that the two cospectral
graphs Gy and GZ discovered sometime ago by Schwenk et al.5
are both derived from wg; by deleting edges connecting the
central vertex to vertices of different parities and thus do
not satisfy corollary 3. Indeed both G, and G2 possess

A,
inverse matrices.

X X

X X
G1 GZ

Finally one observes that theorem 2 generate fully
antiaromatic having only 4n conjugated circuits6 (e.g. the
first three graphs of 'ig 2), while theorem 3 generate non-
kekulean hydrocarbons, i.e. systems for which no Kekule
structures might be written (e.g. the first two graphs of
Fig 3).

Theorem &

Let 6 be a simple graph on n vertices , A its adjacency
matrix and spec (G) the spectrum of the cigenvalues, A 4

of G. The following holds :

Iff ¢ & spec (3) , then A is singular ( iff = " if and
only if").
Proof
The cigenvalues, A , of & follow the equation
ger  Jaa - A -0 (1)

Ln case of A : 0 , the expression becomes

det “ - A H = det A ” = )

ltence A is singualr, when A - O is an eigenvalue of
G as supposed. In order to prove the assertion " only if ",
let us assume O ¢ spcc (G). deccause Lhere are only n
distinct values of } 5 and no one of these cquals zero,
then in order to satisly eqn. I, we have det “‘A “ 4 0

g.e.d



S i

Using this thcorem one might apply the Coulson-Rushhrooke

9
rulcs8 in case of biparlite graphs : the path graphs

|)
2m+ 1 N
3,...) in theorem 2. The construction of the derived

used in theorem 1 as well as the cycles C#n (m=1,2,

graphs provide interesting extensions to these rules.
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