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ABSTRACT

Trees with polyhexagonal supervertices (i.e.
supertrees) are defined. An algorithm is developed

which can be used to represent such trees uniquely.
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in references [1,2] we have developed a method for
the unique representation of trees. In [2-4], we published
a method for the unigque representation of polyhexes, and
in [2,5,6] this method was extended to substituted poly-
hexes. In this paper, we wish to show that both methods
are related.

We will first briefly describe the basis of both

methods.

REPRESENTATION OF PLANAR POLYHEXES

A planar polyhex [7] is a configuration constructed
in the plane by assembling h regular hexagons in such a

way that

(i) two hexagons have exactly one common edge or
are disjoint, and
(ii) the covered area in the plane is simply con-
nected {8] .
The number of hexagons h , making up a given polyhex, is

the degree of the polyhex. To represent a polyhex numer-

ically, we use digits assigned to vectors running along
the boundary edges of the structure, and construct a se-
quence which follows the direction of these vectors. The
boundary of a polyhex in the plane is a cycle in a graph
theoretical sense, because the covered area is simply
connected [9). The interior of a polynex (9,10] is recon-

structable [11] because of the uniformity of the interior
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as far as the boundary is known, and so we can therefore
represent a polyhex only by its boundary, to which we can
ascribe a numerical description.

Considering the geometry of a single hexagon we can
denote each edge by a vector in the plane, and each of
the six vectors by a digit. The orientation of the vectors
is arbitrarily taken to be clockwise. Similarly, the
digit 1 is arbitrarily assigned to the left vertical vec-

tor of the hexagon. This is shown in Fig.1 .

Fig. 1

Vector description of a hexagon and the labelling of its

edges

There are alsc other possibilities open for as-
signing vectors to a hexagon and for labelling its edges
[12] .

In Fig. 2 we show how the labelling of the edges

of a hexagon is extended to polyhexes.
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Fig. 2
Vector description of a polyhex and the labelling of its

edges

The boundary of the polyhex may be labelled by different
sequences of numbers depending on which edge starts the
sequence. We choose that which represents the lexicographic
maximum as the unique boundary code of the polyhex. The

boundary codes for the structures in Fig.1 and Fig.2 are

given below

-
.

(612345)

2 (656123212345 45)

An important point to note is that the polyhex can
be reconstructed from the boundary code. A notation closely
related to that of the benzene periphery, and generalized

to the polyhexes, has been used by Balaban [13] in his
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work on the configuration of annulenes.

In several publications we have shown how all
geometrically planar polyhexes can be generated and
ordered [2,3,4,14].

In the case of substituted polyhexes, the positions
of substitution are denoted by black dots, and the edges
leading to black dots are underlined in the boundary se-
quences. A k - substituted polyhex is a polyhex with k
black dots (positions of substitution). An example of

a substituted polyhex is shown in Fig.3 .

Fig. 3

Vector representation of a substituted polyhex and the
labelling of its edges. Positions of substitution are de-

noted by black dots

The boundary sequence of the structure in Fig.3 is given

below :

33 LHEEGESTE32323405)
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There are also other ways open for labelling the edges

of substituted polyhexes [2,5,6].

REPRESENTATION OF TREES

A tree is a connected graph without cycles [15].
Trees with N vertices can be represented numerically
by N-tuples of non-negative integers less than N [1].
The N-tuples of trees can be produced by mapping the
trees onto N-tuples of non-negative integers by induc-
tion (the trivial tree with one vertex is represented by
1-tuple ). In order to simplify the discussion we intro-

duce a term called the starting vertex , which represents

a vertex of a tree at which we start the N-tuple. Thus a
given tree with N>1 vertices and M edges incident to
the starting edge produces M subtrees obtained by removing
the starting vertex and all incident edges. The subtrees
with L;, Lp,..., Ly vertices (where L; +Lp+ ... +Lly=
N-1 ) are, by induction, provided by L subtuples. We
concatenate the 1-subtuple (M) and these N=1 subtuples,
and get a tuple of 1+Lj+Lp+ ... +Ly =N components which
we define to be representative for the tree. We note at
this point of the discussion that each vertex of the tree
is mapped onto one component of the N-tuple and in the
case of the starting vertex this component is equal to

the valency of the starting vertex, and in all other
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cases is equal to the initial valency decreased by one.
Each vertex of a tree may be used as a starting point of
the N-tuple. This means that the tree may have several
different N-tuples. In order to select a unique N-tuple
representation of a given tree we again use the concept

of the lexicographic maximum. This corresponds to the

highest possible N-tuple representation of a tree. As an
illustrative example we show in Fig.4 the construction of
the highest lexicographic N-tuple for 2-methylbutane

represented by a branched tree with 5 vertices.

Fig. 4

The construction of the highest lexicographic N-tuple for
a tree representing 2-methylbutane. The numbers represent
the valencies of the vertices. The N-tuple starts at the

vertex with the highest valency

4

The N-tuple for the tree in Fig.4 is given by:

4:(31000)

o ©
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The same approach may be used for rooted trees. A rooted
tree 1is a tree in which one or more vertices can be
distinguished from others [16]. An example of a rooted

tree is given in Fig.5 .

Fig. 5

Example of a rooted tree. The root-vertex is in black

5

The starting vertex of the N-tuple representing a rooted
tree is the root-vertex. Thus, the N-tuple for the tree

in Fig.5 1is given by:
5:(22000)

An important theorem which states that two non-isomorphic
(rooted) trees cannot have the same N-tuple was proved
in [2]. In [1] we illustrated how all trees can be ac-

curately generated and ordered by the above approach.

TREES WITH POLYHEXAGONAL SUPERVERTICES

We can now combine both methods by introducing the

concept of a supervertex. We will consider graphs that
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are obtained by replacing a vertex of valency k by a k-
substituted polyhex. We call such a vertex a polyhexagonal
supervertex. In N-tuple representing a tree with poly-
hexagonal supervertices the component corresponding to
a supervertex 1is replaced by the boundary representation
of the substituted polyhex in such a way that each marked
edge of the polyhex points to an edge of the tree adja-
cent to a vertex of the polyhex.

The following algorithm leads to a unique representation

of trees with the polyhexagonal supervertices:
(1) Compute the N-tuple representation of a tree

(2) If the starting vertex is replaced by a polyhex,
rotate the boundary sequence of the polyhex
until the edge cof the polyhex, which leads to
the vertex of the tree represented by the next
component of the N-tuple representaticn of the
tree, is the last edge in the boundary code.

Now cconcatenate the subtrees in the order given
by the boundary sequence of the polyhex.

(3) If any vertex of a tree, other than the starting
vertex, 1s substituted by a polyhex, rotate
the boundary sequence of the polyhex in such
a way that the edge of the polyhex, which leads
to the vertex of the tree adjacent to the sub-
tree of which the considered vertex is the
starting vertex, is the last edge in the se-

guence. Now concatenate the subtrees in the
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order given by the boundary code of the
polyhex.

Since all trees and all geometrically planar sub-
stitututed polyhexes may be generated, we can therefore
generate all trees with the polyhexagonal supervertices
(or polyhexagonal supertrees).

The following example will illustrate the algorithm.
The structure in Fig.6 may be considered as a polyhexa-

gonal supertree.

Fig. 6

An example of a polyhexagonal supertree

The corresponding tree with polyhexagonal super-

vertices is shown in Fig.7
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Fig. 7
The tree with polyhexagonal supervertices (denoted by

black dots) corresponding to structure 6

7

The N=tuple representation of structure 7 1s as follows:

T:(41200000)

The substituted polyhexes that are replaced by superver-

tices are given in Fig.8 .

Fig. 8

The substituted polyhexes in structure 6 that are replaced
by polyhexagonal supervertices to yield structure 7. The

positions of substitution are dencted by black dots
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The boundary sequence representing the structure 8 and 9
are shown below (edges leading for the positions of sub-

stitution, i.e. black dots, are underlined in the se-

quence)

8 :(612345)

9:(6561232345)

First we substitute the starting vertex of T by the

rotated boundary sequence of polyhex 9 and obtain:
[(4565612323)1200000 ]

Next we replace the black labeled vertex of T by
the boundary sequence corresponding to hexagon (a hex) 8

and obtain the representation of the supertree in Fig.7
Du§65§1g32§)1200000(6123u§q

In the case of structures such as one shown below,

10
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which contains a tree subgraph ,

A

i

The two points of attachement of polyhexes are identical.

The supertree corresponding to 10 , is given below ,

12

with the N-tuple representation ,

12 : (3000)

The substituted polyhexes belonging to 10 are depicted

below (black dots denoting the positions of attachment),

13 14
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Their boundary sequences are as follows:

13 : (6561232345 )

W : (65612321234545)

In order to ensure the lexicographically highest represen-
tation for structure 10, in the N-tuple representation of
12 first must enter boundary sequence for 14 and then for

13. This is given below:

12 = [3(65&1232131!545)(65612323“5)0] .
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