MOLECULAR INTERACTIONS IN BIOLOGICAL SYSTEMS.

V. THE STRUCTURAL DISTANCE INDUCED BY

SD* AND ITS APPLICATION TO THE TASTE

CHARACTERISTICS OF ENANTIOMERIC AMINO
ACIDS.

I. Motoc and R. Vâlceanu Chemistry Research Centre B-dul M. Viteazul 24 1900 Timişoara, Romania

(Received: October 29, 1981)

Abstract. The Steric Difference method (SD*) induces the structural distance d, between the bloactive structures S, and S belonging to the same effector series. d, is used to study the taste characteristics of several enantiomeric aminoacids. The equations thus obtained support the statement (Lehmann, 1978) that the sweetness and, respectively, bitterness taste receptors have enantiomeric active sites.

1. The Structural Distance Induced by SD*

We recall the definition of a metric space (M,d) as a non-empty set of elements, M, to which a non-negative real number d_{ij} is assigned to every pair i,j in M and the following properties hold:

$$d_{ij} \geqslant 0$$
 (1)

$$\mathbf{d}_{\mathbf{i},\mathbf{j}} = \mathbf{d}_{\mathbf{j},\mathbf{i}} \tag{2}$$

$$d_{ij} \leqslant d_{ik} + d_{kj} \quad ; \quad i,j,k \in M \tag{3}$$

The bioactive structure S_i belonging to the effector series $S_1, S_2, \ldots, S_i, \ldots, S_n$ is described within the SD*

method²⁻⁴ by the bidimensional vector $\left[\text{SD}_{\mathbf{c},\mathbf{i}}^{\star}, \text{SD}_{\mathbf{w},\mathbf{i}}^{\star} \right] = \text{SD}^{\star}(\mathbf{S},\mathbf{S}_{\mathbf{i}})$. The vector entries, i.e., $\text{SD}_{\mathbf{c},\mathbf{i}}^{\star}$, $\text{SD}_{\mathbf{w},\mathbf{i}}^{\star}$, are computed within the framework¹ IRS = $\bigcup_{1}^{1} \mathbf{G}_{1}$, \mathbf{G}_{1} being the hydrogen-suppressed graphs corresponding to the structures \mathbf{S}_{1} , l= 1,2, ..., n. The reunion \bigcup_{1}^{1} is performed superimposing the pharmacophoric group of \mathbf{G}_{1} .

It is easily shown⁵ that equation

$$d_{ij} = \left[(SD_{c,i}^* - SD_{w,j}^*)^2 + (SD_{w,i}^* - SD_{w,j}^*)^2 \right]^{1/2} (4)$$

satisfies conditions (1) - (3), and, accordingly, (4) defines a structural distance between the compounds S_i and S_j : the larger the structural dissimilarity between S_i and S_j , the larger will be the d_{ij} value.

d_{ij} defined by relation (4) is an useful steric parameter to establish QSAR's for small data series.

The Correlation of Sweetness and Bitterness of Enantiomeric Aminoacids with dii.

The sweetness of D-aminoacids is expressed as the percentage (%) of a sucrose solution with equal sweetness to that of a 0.3% solution of the aminoacid, and the bitterness of L-aminoacids is expressed as the percentage of a caffeine with equal bitterness to that of a 0.3% solution of the aminoacids.

Table 1 collects the taste (%) and normalized taste (NTS) characteristics 6 of aminoacids, as well as the SD* (S_o, S_±) vectors and the values d_{oi} of the structural distance between S_o (i.e., the standard structure: Trp) and S_i d_{oi} is computed according to equation:

$$d_{oi} = \left[(SD_{c,o}^{*} - SD_{c,i}^{*})^{2} + (SD_{w,o}^{*} - SD_{w,i}^{*})^{2} \right]^{1/2} =$$

$$= \left[(10 - SD_{c,i}^{*})^{2} + (-SD_{w,i}^{*})^{2} \right]^{1/2}$$
(5)

(we note that $SD^{*}(Trp, Trp) = \begin{bmatrix} 10 & 0 \end{bmatrix}$, and $H_2N-CH-COOH$ is considered as pharmacophoric group.)

Table 1. Taste characteristics, SD vectors and doi: structural distances.

Aminoacid	%	Taste _{NTS}	SD*	SD₩	d _{oi}
		(Sweetness)			
D-Gly	0.45	1.000	0	0	10.000
D-Leu	1.30	2.889	4	0	6.000
D-Tyr	1.65	3.667	6	2	4.472
D-Phe	2.20	4.889	6	1	4.123
D-Trp	10.50	23.333	10	0	0.000
D-Ala	0.54	1.200	1	0	9.000
D-His	2.23	4.960	6	0	4.000
		(Bitterness)			
L-Gly	0.004	1.000	0	0	10.000
L-Leu	0.011	2.889	4	0	6.000
L-Tyr	0.017	4.464	6	2	4.472
L-Phe	0.069	18.120	6	1	4.123
L-Trp	0.133	34.930	10	0	0.000

The following log NTS \underline{vs} d_{oi} equations were computed:

(sweetness) log NTS = 1.268(
$$^{\pm}$$
0.028) - 0.134($^{\pm}$ 0.005)) d_{oi} (6)

$$(h=0.988, \times=0.069, F=85.364, EV=0.973)$$

(bitterness)log NTS =
$$1.575(\pm 0.111) - 0.161(\pm 0.019) d_{oi}$$
 (7)
(14.129) (-8.504)

$$(r = 0.937, s = 0.216, F = 7.247, EV = 0.838)$$

The equations (6) and (7), which represent good correlations, support the following conclusions:

- the molecular shape conditions the taste characteristics, i.e., the above equations are statistically significant.
- ii) the taste receptors investigated here have enantiomeric active sites, i.e., equation (6) is, within the experimental error, the same with equation (7); eq. (6) was coputed against D-Trp as standard, and eq.(7) against L-Trp as
 standard; equation (8), computed by Lehmann⁶, supports the
 same conclusion

log NTS-sweetness = 0.084 + 0.702 log NTS-bitterness (8) (r = 0.871, n = 4).

References

- 1. I. Motoc and P.M.Reilly, Math.Chem., in press.
- 2. I. Motoc, Arzneim.Forsch., 31, 290 (1981).
- 3. I. Motoc and O.Dragomir-Filimonescu, Math. Chem., in press.
- 4. I. Motoc, I. Muscutariu, D. Ciubotariu, Kexue Tongbao, 26, 361
- 5. I. Motoc and I. Muscutariu, Math. Chem., in press. (1981).
- 6. P.A. Lehmann, Life Sci., 22, 1631 (1978).