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ABSTRACT

The potential of using vertex partitions of
submolecules! to order the corresponding Kekuléd
structures in a two-dimensional space is
explored. Nine graph-theoretical properties
of submolecule graphs derived from cataconden-
sed benzenoid hydrocarbons are given as func-
tions of graph topology.
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INTRODUCTION AND THE DEFINITION OF SUBMOLECULE GRAPH, S(k)

A submolecule is a graph which results when the Kekulé
structure of a benzenoid hydrocarbon is transformed into the
subspace of its double bonds. As an illustration we consider
the "most" and "least" aromatic Kekulé structures of phenan-

threne and their corresponding submolecules as shown below.

o - ¢y

K, SU(1)
5o - O
K, s(xz)

Joela seems to be the first to introduce the concept of the
transformation of aromatic molecules into the subspace of their
double bonds E § Submolecules must be viewed as rewarding
substrates useful for both developing graph-theoretical con-
cepts as well as chemical concepts. This is because, while a
Kekulé structure is no more than a particular permutation(z)

of double bonds, its corresponding submolecule is the connected
graph that represents that particular permutation. Naturally,
since Kekulé introduced his valence-bond structures to repre-—
sent aromatic molecules, many attempts were made to assign
relative importance (weights), to the individual Kekulé struc-
tures belonging to some benzenoid hydrocarbon. Most recent

of these attempts is a VB-MO index, called Kekulé inde?,)K(L),
3

developed some years ago by a group of graph-theorists and

is given by eqn. (1) in cases of alternant hydrocarbons:

k(L) = 5 QIL:%L(z + 2 pw)% (1)



= i) =

where 2N is number of pi electrons and p is a bond order. On
the other hand, this author(h) postulated that a submolecule
contains all information pertinent to the description of a
Kekulé structure, and calculated a branching index(s), Xy of a
set of submolecules corresponding to a sct of Kekulé struc-

tures, as defined by egn. (2) viz.,
1
-
a, = T [6n m)¥] (2)
1d .

where mi is degree of i th vertex in the submolecule, taking

the summation over all {(i,j)-edge types in the S(K) graph.

As anticipated, the order resulting from x,'s parallels

A
the order of the corresponding K(L) values of the Kekulé
structures. Now, since K(L) is a VB-MO quantity, while x, is

a VB one, the result was taken as a substantiation and
explicit illustration of the relation betwcen the two main
theories of organic chemistry, viz., MO and VB theories,

proved recently by Cvetkovié, Gutman and Trinajstié( .

The idea of relating VB characters of aromatic submolec-
ules to their MO counterparts of the corresponding Kekulé
structures was, then, extended to studying the non-adjacent

(7)

numbers of Hosoya of submolecules, and again the resulting

orders of these numbers were found identical to orders genera-
ted from K(L} values(s). The success of the approach en-

couraged us to investigate other graph-theoretical properties
of the S(K) graphs and how they can be related to known VB-MO

indices, such as K(L), in two-dimensional sgace(g) (see below).
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THE VERTEX CODE OF A SUBMOLECULE GRAPH

We define for every submolecule graph, S(K), of a partic-
ular Kekulé structure a vertex code {or partition) given by the
sequence of numbers {vi, Vj’ vk} where, in general, Vi is the
number of vertices of degree m. The entries of such codes
might be viewed as coordinates of a point in a multi-dimen-
sional space, or as defining a vector in such a space. There
is, however, the difference that the sequences of our codes
enumerate different quantities (i.e. vertices of different
degrees), hence the transformation properties of vector spaces
can no longer be legitimately considered, nevertheless, the
language of vectors is convenient. Our original objective
was to use a pair of vm‘s (such as {vi, VJ}, {vi, vk}, or
{vj, vk} as the coordinates of a two-dimensional space defin-
ing points represenging particular S{K) graphs, hoping that
such a pictorial immage of a set of submolecules, will order

them, as predicted from the Kekulé indices of their corres-

ponding Kekulé structures. Naturally, ordering requires
comparison and the latter implies certain criteria (in our

case the various vm's). The legitimacy of the use of
sequences of numbers representing valencies (degrees) of graphs
has been examined 10), and the concept of ordering is only a

recent one in chemistrz(11).

ORDERING SUBMOLECULES USING THEIR VERTEX CODES:

Figs. 1-3 show how one might use pairs of vm's as co-

ordinates through which individual submolecule graphs are
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defined in two-dimensional space. The numbers written above
each S(K) graph are Kekulé indicces, K(L)'s, 0! the correspond-
ing Kekulé structurcs(j). The signs used in parcntheses indi-
cate either an increase, (+), or a decrease, (—), in the nume-
rical values of K(L)'s as one proceeds from a structure with a
smaller number of v's to struectures with larger v parameter$(12?
Thus, e¢.£. {+, -) means that k(L) increases as v,
decreases as v3 increases, and so on. The "size" of the

does, but

closed circle (identifying the location of a particular sub-
graph) is meant to be proportional (roughly) to the cerrespond-
ing K(L) values in case of triphenylene, Fig. 1, as an illus-

tration.

It turned out, however, upon studying large numbers and
types of benzenoid hydrocarbons (including linear acencs, non-
branched all-benzenoid, branched all-benzenoid, and non-all
benzenoid catacondensed systems) that the results are actually
not as encouraging as they might first appear to be. Fig. 4
shows all submolecules of benz [g] anthracene as an example
of a non-branched, non-all benzenoid calacondensed hydrocarbon.
Vertex codes and K{L) values are given below each graph. It
becomes evident that more than one submolecule the Kekulé
structures of which have different Kekulé indices might have
identical vertex codes. Fig. 5 illustrates the situation with
a non-branched all-benzenoid catacondensed hydrocarbon. Again
a complete ordering of the S(K) graphs does not seem possible
using their vertex partitions. A number of interesting ques-
tions, however, arose in connection with how these vertex codes
partition themselves according to the topology of the hydro-
carbon. Some of these questions are i) Given a set of m
vertices, to be "combined" somehow, so that some become bi-
valent, others trivalent and/or tetravalent (i.e. possible
degrees are only 2, 3 or 4), how many allowed partitions are
there to correspond to the various pcermutations of double bonds
in the corresponding Kekuld struclures? i.e. if m —p {vg,

v VQ } where v'C is number of vertices of degree x, can we

3!

find all allowed {vz, vj, VHB’S consistent with a particular



220

+193DBIBYD ,8U8d® IBAUIT,, Y3TY JO S,Hd Y3ITM sonleAr (T))Y 1USI9FFTP 3FO
siaquow YsInZUTISTP 03 SOPOI-X93I3A 9yl FO SINTTIBF MOYS 01 PapuaiIuT st 3ofd 8yl

‘UOTINQTIISIP X93IL9A ITAY3 03 SUIPIOIIE POIIPIO SUIIBIYIUR [BJZUAQ FO sa[ndafouqng

tp 814

4
A
g v £ [4
T T \ O
99680
11
106D
zv06°0
8706% ¢
£8060 %VA
09680
d “” H _ Y/
41150 %AHH A




221

csydead oprsoq usaA1d 21
ubs ‘sonyea (7)Y ‘uoritided xeiiea Jursn ousdtd jo sydead (y)s Fo Surispip

1681
Ly
L

w
Ve

72960 % 4
9706% gﬂ?

L7060 b%p s
3306 %

71160 {Aﬂp -




- 222 -



~ 223 -

hydrocarbon topology? ii}) Is it possible to deduce highest

and lowest allowed wvalues of v given a particular topology?

s
Obviously, doing so, defines biundaries of all possible vertex
partitions of the hydrocarbon, iii} Let the number of ben-
zene rings in the hydrocarbon be R, can we express (v2+v3+vk)
as an f(R)? Doing sc, would help answer i) at least par-
tially. Obviously the total number of vertices in S(K) is
given by: v2+v3
Figs 1-3 that dv2/dvh is always unity: What is the impact of

+v, = (4R+2)/2 = 2R+1. iv) One observes from

this observation, if real, on the partial sums resulting from
the integers composing the vertex codes, considering inequali-

(13),

ties of Muirhead The latter being essential for testing

the legitimacy of comparison of a set of structures(lh).
Answers to the above, and such questions are of graph-
theoretical interest and importance, and as such, the topic

deserves consideration.

GRAPH-THEORETICAL PROPERTIES OF SUBMOLECULES OF CATACONDENSED
BENZENOID HYDROCARBONS:

At the outset it is convenient to distinguish five types

(15)

of the above category of hydrocarbons viz., a) The linear

acenes, b) Non-all benzenoids e.g. benz [al-anthracene,
pentaphene etc. c) All-benzenoid systems e.g. phenanthrene,
chrysene etc. d) Branched non-all benzenoid and e) Branched

all-benzenoid hydrocarbons.

The following properties are general to types a-e of

bensenoid hydrocarbons(16

10 The number of independent cycles in S(K) is equal to R, the

number of hexagons in the hydrocarbon graph.
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The total number of vertices of S(K) is m = b/2, where b is

the number of vertices in the graph of the benzenoid hydro-

carbon. The total number of vertices in S(K) is related
z b
to R by eqn 3, viz. m = 5 = 2R+1 = v2+v3+vu.

The size of the smallest cycle of S(K) is always three.

S(K) possesses only vertices of degrees of 2, 3 and 4.

As a result of the topology of benzenoid hydrocarbons a
single tetravalent vertex generates four bivalent vertices,
two tetravalent vertices lead to five bivalent ones and so

on. This relation is expressed by eqgn. 4:
Vv, = 3 (&)

As a consequence of this, partitions of vertices which con-
tain only three bivalent vertices shall have no tetravalent
vertices. Such particular codes (partitions) might be
expressed as {3, (2R-2), (0] }. (c.f, relation Zo).

From 20 and 50 one concludes that the total number of bonds

in a submolecule graph equals

2v, + 3v

s + bv, = 6R = b + 2(R-1) (5)

3

Relations 5D and 6o predict that a linear relation exists
between vy and vj. However, the slope is unity only for

de/dvh'

On going from one partition to another v3 increases {dec—

rea:es) twice as much as either v, or vy, decreases (inc—

2
reases). For example, phenanthrene partitions might be

generated from one another as illustrated below
-1 -1 -1 -1
{5 — 0 g 2} v\'b {!} —_— — 1}

o s e s &% 6 @ 2l z S 4

(3
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consequently the partial sums resulting from these codes

violate inequalities of Muirheadklj). The above codes of

phenanthrene e.g., lead to the following partial sums:
555075 M.6,7 and 3,7.7

THE NUMBER OF PARTITIONS, n

In order to compute all possible vertex partitions consis-

tent with a given topology one should know the upper and

lower limits on some vj (j = 2,3,ﬁ) plus property 80, Tt
turns out that the boundaries on Vj is a specific function
of the particular type of the catacondensced hydrocarbon
(a—e, above). At this point we need to cite some rather
uncommon definitions to facilitate writing this part of the

manuscript.

It is convenient to fepyesent benzenoid hydrocarbons using
17

their dual subgraphs These graphs are generated from
the hydrocarbon graphs by replacing their hexagons by verti-
ces and then comnecting adjacent ones, thus, e.g.

G(I) — D(I):

B s
YUY 4 BT

bs

D(I)




(b)

(c)
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We define the following terms.

Linear Subgraph(18}, Gy (Straight Subgraph). It is de-

fined as a subset of hexagons (or the corresponding dual

vertices) fused (linked) in a straight line fasion. Gy
containing p hexagons is said to be of order p. It is
denoted by GL(p). The linear acenes, as a result of this
definition, contain only such subgraphs. D(1), e.g.,

contains the following linear subgraphs
G (2) = {1,2}; 6 (2) = {2,3}, GL(Z) ={3,4}, GL(B) = {u4,5,6},
GL(Z) & {6,7}, and GL(Z) = {6,8}. The numbers in paren-

theses are indices of hexagons in G(I), i.e. indices of

vertices in D(I).

Terminal vertex

It is a dual vertex defining the terminus of the graph.

For example D(I) contains three such vertices located at

positions 1, 7 and 8.

Kink vertex

We shall call a dual vertex a kink if it defines either the
intersection of two linear subgraphs, one of which is termi-
nal (normally, it contains a terminal vertex) or if it is
located at the intersection of two GL's, both of which have
orders of 2. Thus D(I) has kink vertices at positions 2
and 3 only (observe that vertex at position 6 defines
intersection of three GL'S, so it is outside the scope of
our definition, so is vertex 4% since neither {3,4} nor
{h,5,6} is terminal, while the latter has an order of 3).

A vertex that defines the intersection of two non-terminal
linear subgraphs, one of which has an order 2:lwi11 be

termed a bend. The vertex at position 4 in D(IL) is such
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a vertex, We shall use the following symbol L = Number of
independent GL's(L)r
D(I), e.g. has L = 6

Number of terminal vertices in dual

Number of kink vertices in D

i

Number of bend vertices in D

o R
1

It

Number of dual vertices which are not termini of

linear subgraphs

D(I), e.g. has one such vertex, at position 5, thus

%D(I) = 1
As a result of the above definitions we have the follow-
ing facts 1) For a molecule of linear acene one has T= 2,
~R:5P= 0, P = R-2: (R = number of dual vertices), 2) A non
branched, all-benzenoid catacondensed hydrocarbon is charac-
terised by T = 2, ‘ﬁ': L+1, ‘6:-9 = 0, 3) A non-branched,

non-all benzenoid catacondensed hydrocarbon is characterised by
Y- 2, ﬁ_: L+1, £4 0, 4) A branched all-benzenoid cata-
condensed system has T » 3, '%': L+1, ﬁ: P- 0, and 5) A
branched-non-all benzenoid catacondensed hydrocarbon will have

T}B,ﬁ:lﬁh'ﬁ#ﬂ.

Observe that a non-vanishing value of ﬁ would necessarily
indicate a non-all benzenoid system, however, the reverse is
not true, thus D{II), e.g. is non-all benzenoid, but has a
vanishing value of ﬁ

D(II)
T = 3y 'ﬁ_=1, f3=0’ «9:2

Now we are in a position to set boundaries on v, in S(K) graphs

as a function of hydrocarbon topology
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NON-BRANCHED NON-ALL BENZENOID CATACONDENSED SYSTEMS

Let v, (min.) = minimum number of v, in SIED. v, (max.)

be maximum of that number. The following two equalities hold
v, (min.) = 2 + § (6)
v, (max.):j+L:h+ﬂ+ﬁ (7)

Examples of this class of hydrocarbons are benz [ a ] anthracene,

D(III), and pentaphene, D(iv), the duals of which are shown

below:
D(II1) D(IV)
For both duals, i{ =1 (closed vertex) and L = 2. Thus we can

write for the two duals
2 (min) = 3; v, (max) = 5,

but we know that Vo

tributions defining the boundaries of the vertex partitions,

= Wy, = 3, therefore there must be two dis-

for both hydrocarpons, viz.,

{3, vj, 0} and {5, vj, 2}

@ o i
In order to compute v, we make use of reltation 2, viz.,

3

v, + Vv, + V = 2R + 1, which leads to the following upper and
2 4

3

lower limits of vertex codes (partitions):

Benz Eg] anthracene: {3,6,0}H{5,2,2}

Pentaphene : {B,B,O}H {5,4,2}

or, in general

{Vz(min), vg(max), vh(min)} 0——b{v2(max), vj(min), vh(max)}
The number of different partitions, n, is then given by:

n

v,(max) - v,(min) + 1

L—ﬁ+2:p+3 (8)

]
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Corollary

Catacondensed non-branched non-all benzencid hydrocarbons

containing vanishing values of B nave only three different

partitions
We illustrate the application of the above finding with

D{v):

D(Vv)

D(v) has the following values of the variables:

ﬁ; 2 (positions 2 and 6), ﬁ: 1 {position 3), L = k.
Therefore vz(min) 2 +fi =4, vz(max) =3 + L = 7, whence
n=7-4 +1 =4,

We might easily construct the four different partitions, thus:
{5,10,1} —> {5,8,2) —> {6,6,3}y —> {7,4,4} .

Two of the S(K) graphs defining the boundaries of the parti-

tions are drawn below:

S(K)yz(nin) S(h)y2(max)

{u,10,1} {7,4,4}
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Theorem

For a non-branched non-all benzenoid catacondensed hydrocarbon,
its Kekulé count, K is > n

Proof
vzﬂmax) = L+3 ; but L = R-1-9
Therefore, vz(max) = R+2-9 but va(min) = 2+ﬂ ;
whence n = vz(max)— vz(min) + 1 = R-(D +*L). (9)
Now K (linear acene) = R+1 . K 2R (for non-linear acene).

Since both £ andii are non-negative parameters K must be > n.

Equation (9) enables us to put limits on the potential of
ordering a set of Kekulé structures in the two dimensional
space via the vertex codes (vertex partitions) of their sub-
molecule graphs. Obviously the linear acenes must be regarded

as particularly discouraging in this respect:

Theorem

The vertices of a set of submolecules belonging to a linear
acene might be partitioned in only two distinct ways

Proof

For any linear acene ﬁ,: 0 and 9 = R-2,

whence n = R-( +R) R-R+2 = 2.

In the above context we might speak of a "linear-acene
character"; the more such character gets, the less are the

number of partitions of the corresponding S(K) graphs.
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NON-BRANCHED-ALL BENZENOID CATACONDENSED HYDROCARBONS

The following relations hold:
(a) v,(min) = L+1 = £L+2 for R = 3,4

-5 =8 (R = 5,6) (10)
= L1 =§ (R = 7,8)

=L1-2 - § -1 (R = 9,10)

ete

(0} vz(max) = L+3

=By (11)

Observe that for this class of hydrocarbons we have

L :ﬂ_ﬁ-T (12)

Let n(i,j) be the number of different partitions for an
all-benzenoid non-branched catacondensed hydrocarbon. The

following relations might easily be written:

n(3,4) = 3,
n(5,6) = 4, (13)
n(7,8) =5 ..... etc.

An obvious conjecture for this class of hydrocarbons is that

K is larger than n, but since K, in these cases, increases

faster than n we conclude that as the size of the hydrocarbon
increases its vertex codes become less efficient in assigning

weights to its Kekulé structures.

ALL-BENZENOID BRANCHED CATACONDENSED HYDROCARBONS

vz(min) = 'T’+ﬁ_ (14)
%hmx):2?+k {15)

B n = T+1 (16)
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As an illustration we consider D(vi), for

—D
—e
%
G(vI) D(VI)
which fh: 2y P =« 33 therefore
vz(min) = 53 v2(max) = 8 leading to the following

partition boundaries:
{5,6,2} <+ {8,0,5}

where we have made use of 2? and 50.

Two S(K)‘s representing the above partitions are outlined below

{5.6,2} {8,0,5}

Other partitions in between these two limits might most

easily be computed.

Eqn. (16) allows one to speak of "branching" of a graph in

terms of its vertex partitions:
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Conjecture

In a set of isomeric all-bengenoid catacondensed hydrocarbons

a more branched system has more vertex partitions of its S(K)

sraphs than a less branched one has.

Naturally as the number of partitions goes up vertex

codes become more efficient in distinguishing Kekulé structures.

We can tell that by inspection: Consider D(VII) and D(VILT):

O\
M -
}”*’\b_o

D(VII) D(VII1)

=3 T=6
The dual on the left has only 3+1 = 4 partition while the more
branched one to its right has 7. Using egns. 14, 15 together

with relations 2° and 5° allow constructing such partitions

without actually drawing any graphs!

BRANCHED NON-ALL BENZENOID CATACONDENSED HYDROCARDONS

v2(min) = 1'+ﬁ, {(17)
vz(max) = 2T+ R +f3 (18)
n="T+g +1 {19}

We illustrate the above relations with D(IX):

DD, 4
D6 e@“ - 1/2‘\1/3‘&%/07
(8) 8

&(1x) D(IX)
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D(IX) has the following parameters
T2 = 9, ﬁ: 2 (positions 2 and 3),
Bg-=1 (position 4).

% v?(min) = 54 vz(max) =9

Two such limiting S(K)'® are shown below

£5:70,4} {9.2,6}

Conjecture

In a set of isomeric branched non-all benzenoid cata-
condensed hydrocarbons, the number of vertex partitions goes up

with the number of bend vertices.

Graphs (IX), (X) and (XI) are illuminating the point

D(IX) L D(X)
D(X1) i
D(IX): g =1, £ =2, n=5
D(x) : B=1; £ =1, n=5
p(x1): f=0, R =1, n=4
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