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ABSTRACT :

A novel approach relating "conservation of molecular topology"
during transformations of a set of Kekulé structures and
stability is presented. The theory assigns parities to
Kekulé structures of benzenoid hydrocarbons which lead to
vanishing algebraic structural counts to higher members of
lincar acenes that were found too unstable to be prepared.
Furthermore it explains situations where K (Kekulé count}
alone does not lead to correct order of stability among
catacondensed benzenoid hydrocarbons (e.g. K(triphenylene)
= 9, and K(pentaphene) = 10, but their stabilities are
reversed). A novel stability index is introduced that
combines both combinational and topological aspects of
hydrocarbon stability and was found to be consistent with
experimental facts that the existing theories are not.

1) INTRODUCTION

The molccules of the linear acenes fail to exist beyond the
sixth ring . 5 In fact hexacene itself is unstable while
heptacene has not been prepared = " Yet all existing theore-
tical methods predict sizeable amounts of resonance encrgies,
RE‘S, for these molecules. Thus for hexacene, e.g. Aihara cal-

)
culates an ALL RE of 0.706 B(B) and graph—theoretical(4) value of

0.778 B; Its topological RE amounts to 0.706 B(5).

(6)

molecule of a linear acene Randié¢ expresses its RE as the sum of

Dewar and De Llano computes a value v 2 ev For a

values donated additively by all its conjugated circuits(7) and
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(8)

might be expressed for a linear acene containing i rings as

3
{2/(i+1)}Y L (i+1—x)Rx, where R is a conjugated circuit, the
x=1

(7).

value of which depends on its size, x, as computed by Randic

The numbers resulting from these theories even when divided by

the number of rings or pi electrons do not predict instability

of linear acenes higher than pentacenc. A theory that accounts
for this peculiar behaviour of the linear acenes and in the

meantime consistent with other facts seems desirable.

2) REPRESENTATION OF THE KEKULé STRUCTURES AS THEIR SUB-

MoLECULES ' ?/

A submolecule is a graph resulting when a particular
Kekulé structure is transformed into the subspace of its double
bonds(g). Recently the author(lo) studied connectivities of
these graphs for a wide variety of aromatic hydrocarbons and
found a relation between the connectivity of a submolecule and
the Kekulé index(11) of its corresponding Kekulé structure for

some one hundred cases. Hence a submolecule might be taken to

represent the corresponding Kekulé structure. Thus, the fully

benzenoid Kekulé structure of naphthalene, e.g. is given by its

submolecule, viz., Enq and so on.

3) DEGENERATE TRANSFORMATIONS IN A SET OF SUBMOLECULES:

We define a degenerate transformation between two sub-

molecules as one involving only rearranging one edge in the sub-

molecule graph. Thus the two non-equivalent submolecules of

naphthalene transform to one another degenerately as follows:

B — <

FIG. 1: Degenerate transformation between the two non-equivalent

submolecules of naphthalene.

A non-degenerate Lransformation between two submolecules would

necessarily involve the intermediacy of a "different topology".

Thus the transformation between the submolecules representing

fully benzenoid and least benzenoid Kekulé structures of
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phenanthrene passes through an "anthracene topology"; and thus

is defined as a non-degenerate transformation:

PREN

i

0

FIG. 2: A non-degenerate transformation between the "most
important” and "least important" graphs. The trans-
formation proceeds via an anthracene topology. Edges

involved are heavily drawn.

Members of a set of submolecules that transform to one another
degenerately (i.c. via rearrangement of only one edge and

without the intermediacy of a different topulogy) are called

degenerate.

k) ASSIGNMENT OF PARITY TO INDIVIDUAL SUBMOLECULES BELONGING TO
ONE CATACONDENSED BENZENOID HYDROCARBON:

i- Degenerate members are given a parity, p = +1.
ii— Members that do not conserve topology when being trans-
formed to other submolecules of the hydrocarbon that
¥*

have identical counts of conjugated circuits 7 , CC,

are given p = -1.

iii- A single submolecule with different conjugated circuits
count¥than the rest of the set is given p=o. Such a
"single" submolecule will not be degenerate with other

members and will be termed "single" graph.

The method is being illustrated for the pentaphene submolecules.
(For convenience Lhe hydrocarbon graph is lightly drawn around

its submolecule).

*Tn corresponding Kekulé Structure(s).
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(1) ; (2) (1)
t;z? ; 5; 25 <t : 4 ;;:S Zz::>
a b c

P = +1 p = +1 p = +1
: (2) (2)
d e

p = +1 P = +1

(1)

g O*D {arb9c} s {d¢e}

p = -1
g

p=20

FIG. : Degenerate , g , and non-degenerate, q}é&, trans-
formations of pentaphene. Only graph g contains 9 cc,
the rest only five. Thus g is a "single" graph

whose parity is zero.

Members {a —p f} have c¢c = 5 while g has 9 cc
Numbers above individual graphs are their multiplicities; e.g.
there are two equivalent Kekulé structures® of b (h and its

mirror immage) and so on.

*Graphs (a—g) are non-cquivalent while b and its mirror immage

are egquivalent.
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5) AN TNDEX OF STABILITY, S:

For a catacondensed benzenoid hydrocarbon a stability

index, 5. is defined by egn. 1,
K!

8 = K. K n,p. ' (1)

i=1
where K is the total number of Kekulé structures n; is multipli-
city of i th submolecule and Py its parity. The summation is
being taken over all non-equivalent Kekulé structures K'. Thus
for pentaphene we have:

§ =10 (1 + 2x1 + 1 + 2x1 + 2x1 - 1 + 0x1) = 7

6) THE LINEAR ACENES:

One peculiar feature that is very particular only to

linear acenes is the fact that for a linear acene containing i
rings only one pair among its (i+1) submolecules "conserve
topology" when transformed to one another. This is shown in

Fig. 4 for heptacene.

(2)

FIG. 4: Degenerate and non-degenerate submolecules of hept-
acene. All graphs contain 7 cc
All members have identical cec counts. According to eqn. 1,

heptacene has no stabilitly (S:O), which is consistent with
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(2, 3)

degenerate. Thus to go from a to d, e.g., would necessitate

experimental findings Observe that only a and b are

replacing heptacene topology with benz [gﬁ]hexacene, Fig. (5).

FIG. 5: A non-degenerate transformation of heptacene.

7) RESULTS AND DISCUSSION:

Table 1 outlines stability indices for 17 catacondensed

hydroc?r?ons and their RE'® based{on)conjugated circuits
7 12

counts i Balaban-Harary duals are used to represent the
hydrocarbons. (The hexagons are replaced by vertices and then
connecting adjacent ones). The merits of our stability index,

S, becomes clear from inspection of table 1:

i- Linear acenes have decreasingly lower 5$'% as the number of
their rings increases. The formalism predicts no stabi-
lity for heptacene which is consistent with experimental
facts(J).

ii- Heptacene and both hylirocarbons 9 and 10 have 8 Kekulé
structures and almost identical RE'® yet the two latter
isoconjugates are far much more stable; as reflccted in
values of S.

iii- The above observation is not limited to a comparison
between a linear and a non-linear acene: thus pentaphene,
11, has K=10 while triphenylene, 12, has ohly K=9, yet
their RE'® are very similar (in fact RE(12) is slightly
greater than RE(11), a fact reflected in their respective
S values).

iv- Similarly hydrocarbons 13 and 16, both having K=13 yet
RE(16) b4 RE(13); which is again consistent with values of
S.

Our stability index might thus be viewed as an "algebraic
structure count” designed for catacondensed benzenoid hydro-
carbons, particularly to compare benzenoid hydrocurbons, €spec-— .

ially to compare branched with non-branched ones. Many years
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1
(13, %) demonstrated that the

ago Dewar and Longuet-Higgins
simple structure counting rules of resonance have quantitative
significance when applied Lo even alternant systems constructed
from rings of (hn+2) atoms and chains. We may now view this
opinion as representing only part of the truth. it turns out

that both topological as well as combinatorial aspects must be

taken into consideration. K reflects the latter character only,

while S contains both. The present approach offers for the
first time a relation between conservation of molecular topology
among a set of submolecules and the stability of the hydro-
carbon they represent. A "state" defined by a subset of
degenerate submolecules might pe thought of as a "bonding MO
that containing a collection of non-degenerate ones as a "anti-
bonding MO" while that containing a "single" graph would then
represent a "non-bonding MO". Fig. 6 shows such states for the
benzopentaphene, 13 (See TABLE 1).



FIG. 6: Bonding,{ },antibnnding i ),an1 nnn-bonding’[ thates

of benzopentaphene (1 3) .
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Stability indices, S, (eqn. 1) and RE'S of Randid

1

catacondensed acenes.

No Dual graph
1 oo

2 o-0~0

3 0000

I 0-0-0-0-0

5 D=0a 00

6 o-0—0—0-000
7 oo

. ood

sig s ST
11 ,ﬂ:‘\E

12

13 e
14,15 fo—cf,%.o.f
16 &ﬁdz

17 ™

= 207 =

SR B BT T - TS Y- N ) |x

-

13
12
13
13

N oW oFE W

o~ o o & O

1.2
12

b2
64
70
72
104
144
156
156

(7)

of

1.323
1.599
1.782
1.883
>2
D2
777
.32
.54
.70
7
.94

-

.12
13

LC I UL SR IS I \C T \C IR (S M




- 208 -

REFERENCES :
1) E. Clar, The aromatic sextet (John Wiley & Sons, London,
1972) p. 14.
2) E. Clar and B. Goggiano, J. Chem. Soc. 2683 (1957).
3) Jun-ichi Aihara, J. Am. Chem. Soc. 99, 2048 (1977).
4) Jun-ichi Aihara, J. Org. Chem. 41, 2488 (1976).
5) I. Gutman and S. Petrovié, Bull. Soc. Chim. Beograd 46,
459 (1981).
6) M.J.S. Dewar and C. De Lelano, J. Am. Chem. Soc., 91, 789
(1969).

7) M. Randié, Chem. Phys. Letters, 38, 68 (1976).

8) S. El-Basil, MATCH, 11, 97 (1981).

9) H. Joela, Theor. Chim. Acta.39, 39 (1975).

10) S. El-Basil, Int. J. Quantum Chem. 21, 000 (1982).

11) A. Graovac, I. Gutman, M. Randid and N. Trinajstid,
J. Am. Chem. Soc., 95, 6267 (1973).

12) A.T. Balaban and F. Harary, Tetrahedron 24, 2505 (1968).

13) M.J.S. Dewar and H.C. Longuet-Higgins, Proc. Roy. Soc.
A214, 482 (1952).

14) C.F. Wilcox, Tetrahedron Letters 7, 795 (1968).



