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Abstract: If a cata-condensed benzenoid hydro-
carbon with h six~-membered rings has K Kekulé

structures, then h + 1 < K < 2=l .1,
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INTRODUCTION

In the present paper we denote the number of
Kekulé structures (i.e. the Kekulé structure count)
by K and the number of six-membered rings by h. The
structure count of a benzenoid system with h hexagons
will be sometimes denoted by Kh' The abbreviation

CCB will be used for "cata-condensed benzenoid".

The calculation of Kekulé structure count of
benzenoid molecules is a problem which attracted the

attention of a large number of scientists over a long
periodl-le. Closed analytical formulas for K have
been determined for various classes of benzenoid sys-

1,2,7-10

tems Different enumeration techniques have

1,%-6,8

been proposed An efficient recursive method

for the enumeration of K of non-branched cata-conden-
sed benzenoid systems is long knownl. According to

this method,

Ky = Kpq,+ 1 (1)

in the case when all hexagons are annelated in a linear

mode, and

Ky =K, 4 + K o (@)

if all hexagons are annelated in an angular modela;
the structure count of all other non-branched CCB
systems lies between the above two extremes. Since

in both egs. (1) and (2), K; = 2 and K, = 3, we



obtain the bounds

x < % [(}.%E)h*z N (1_;."_5)'”2 . 5

In the present paper we offer an extension and

N

h+1

generalization of the result (3) to the case of all
cata-condensed (that is, both non-branched and branch-
ed) benzenoid molecules. Namely, we prove that for

all CCB systems,
h+1 <k gAML, (4)

It can be immediately verified that both the left
and the right inequality (4) become equalities in the
case of h =1 and h = 2. Therefore in the follow-

ing we shall assume that h>2.

SO0ME PROPERTIES OF CATA-CONDENSED BENZEROID
HYDROCARBONS AND THEIR KEKULE STRUCTURES

Cata-condensed benzenoid hydrocarbons have the
general formula Cu, SH, .. (h = 1 stands for benzene,
h = 2 for naphthalene, h = 3 for anthracene and phen-
anthrene, etc.) These hydrocarbons are characterized
by the fact that all their carbon atoms lie on the
perimeter. (For details on various topological cha-

racterizations of the CCB systems see refs. 14,15.)
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The molecular graph of a CCB hydrocarbon will
be called a cata-condensed benzenoid graph (CCB graph).
Let G be a CCE graph. Then G has n = 4 h + 2 verti=-
ces and m=5h + 1 edges. The vertices of G will

be labelled by V11VoaeeeyV,

. and the edges by

el,ez,..-,en,El,...,Eh_l in such a manner that the
edge e; connects the vertices vy and Vil (i = 1,200
ees,n-1), the edge e, connects the vertices v and vy
and the n-membered cycle V18 Ve Vzerse V€ V) is
just the perimeter of G.

The edges €1+9€p9ees,e, Of the graph G will be
called external. The remaining h - 1 edges El""'Eh-l

are said to be internal.

Every Kekulé structure of a conjugated molecule
is in a one-to-one correspondence with a certain se-=
lection of n/2 independent (i.e. mutually non-incident)
edges in the pertinent molecular graphls. A selection
of n/2 independent edges in a graph with n vertices is

called a perfect matching of this

graph.

Hence every Kekulé structure of a CCB hydrocarbon
corresponds to a choice of 2 h + 1 independent edges
in the respective CCB graph. We will classify the per-
fect matchings of a CCB graph according to the number
of internal edges they contain. A perfect matching of

a CCB graph is said to be of type k if it is composed



— ATt =

of k¥ internal and 2 h + 1 - k external edges.

Lemma 1. Every CCB graph has exactly two perfect
matchings of type O.

P r oo f. These two perfect matchings are

(91’83'°"’en-1) and (ey,e,,.005e ).

Lemma 2. Lvery CCB graph has exactly h -1
perfect matchings of type 1.

Pr oo f. Let the edge Ei connects the vertices vp.
i
and v. « Then, obviously, p: - q; is odd. If a
a i s
perfect matching of the graph G contains the edge Ei’

then the additional 2h edges cannot be incident to the

vertices vp and vq . ilence we have to select 2h in-
i B

dependent (external) edges from the graph G—vpi—vqi.
Without losing the generality of our proof we
may set Py = 1 and a = q, where g is an even in-
teger. By deleting the vertices vy and vq from G,
the perimeter of G decomposes into two paths:
VoeoVzezeseVy g and Va+1%q+1q+2%q+2° * *Vn-1° Both
paths are of odd length and thus both have a unique

perfect matching: (92’94""‘eq—2) and (eq+1,e

q+30 " "
""en—l)' Therefore there exists a unique perfect
matching of G possessing the edge Ei and 2h external
edges.

Lemma 2 follows now from the fact that the above

conclusion applies to all edges Ei, i=1,.0e4h-1.
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Combining Lemmas 1 and 2 we immediately obtain

the left-hand side inequality in (4).

Lemma 3. If k>2, then every CCB graph has

at most (h;l) perfect matchings of the type k.

Proof. We shall use a similar argument as in the
proof of Lemma 2. Let us consider a set of k internal
edges of G (1< k<«<Ch). Without losing the generali-
ty of the proof, we may assume that the elements of
this set are E)yEoyece,Epe

ql,vpa,vq2,...,vpk
and vqk from G, the perimeter of the graph G decomposes

By deleting the vertices vp Vv
1

into a colliection of paths. If the length of every
path in this collection is odd, we will have a unique
selection of 2 h + 1 - k independent external edges
in the graph G-vpl—vql-vpe-vqa—...-vpk-vqk. Then in
the graph G there will be a unique perfect matching
of the type k, possessing the internal edges EI'EE""
""Ek' If, however, at least one path from the above
collection has even length, then a perfect matching of
type k, possessing the edges El’EE""’Ek can not
exist.

Hence we proved that there exists at most one per-
fect matching of type k, possessing a given set of k
internal edges. ©Since k internal edges in the graph
G can be chosen in (hil) distinct ways, we arrive to

Lemma 3.
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Lemma 4. Every CCB graph has at most o1 _
perfect matchings, containing at least one internal

edge.

Proof. Lemma 4 follows from Lemmas 2 and 3 because

of the identity

h=1
) h-1

:EE: ( X ) =277 -1 .

k=1

The right-hand side inequality in (4) is now a

straightforward consequence of Lemmas 1 and 4.

This completes the proof of the relations (4).

DISCUSSION

The lower bound in (4) is the best possible since
there exists a CCB hadrocarbon with h six-membered
rings, having h+1 Kekulé structures (the linear poly-
acene). The upper bound, however, reproduces the
greatest possible value of K only for h = 1,2,3 and
4, ¥For larger values of h, the upper bound (4) signi-
ficantly overestimates the actual Kekulé structure

count of CCB hydrocarbons.

h maximal upper maximal upper
K value bound (4) b ¥ yalue bound (&)

1 2 2 7 38 65

2 3 3 8 66 129

3 8 5 9 107 257

4 9 9 10 189 515

5 14 17 11 296 1025

6 24 33
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The finding that the linear polyacenes are the
CCB hydrocarbons with minimal structure count is not
a surprising result and was certainly anticipated by
many authors. Nevertheless, the proof of this result
(which is given here for the first time) seems to be
not quite elementar.

The characterization of CCB hydrocarbons with
greatest Kekulé structure count appears to be a much
more difficult task. The results obtained in this
paper are far from the final solution of the problem.
We hope therefore that a better upper bound for Kh
will be discovered in the future.

Concluding this paper we would like to point to
some related, but still unsolved questions.

(a) Which is the maximal possible value for the
Kekulé structure count in benzenoid hydrocarbons with
h hexagons?

(b) Which is the minimal non-zero value of the
Kekulé structure count in benzenoid hydrocarbons with
h hexagons? +We conjecture that if X is not zero, then
K>h+1 for hg€?7 and K229 for h3=8.

(¢) It would be interesting to determine all
benzenoid hydrocarbons which have 2,3%,4,5,6,7 and 8
Kekulé structures. We conjecture that their number
is finite. On the other hand, there are infinitely

many benzenoid systems with nine Kekulé structures.
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