malch no. 13 pp. 151-166 1982

RESEARCH NOTE:

ON THE EXPANSION OF THE yu-POLYNOMIAL OF A SIMPLE GRAPH

PARTITIONED INTO SUBGRAPHS WITH AT LEAST TWO COMPONENTS®

Oskar E. Polansky and Ante Graovac*¥

Max-Planck-Institut fir Strahlenchemie, D-4330 Milheim a.d. Ruhr

(Received: November 16, 1982)

The polynomials play a significant role in graph theory:
the characteristic polynomial ¢{G] and the matching polynomial
u{G) of the graph G. Recently, a new graphic polynomial, u(G,t),
has been intreduced [l1] which reduces to ¢(G) and o{G) for t=1 and

t=0 respectively:
u(G,1) = ¢(6G); u(6,0) = a(G). (1)

As shown in [1] the p-polynomial obeys the following recursion

formula

WB) = u(G=eyy) = u(G-vy-vy) = 2t fu(6-2,5); (2)
{Zij}
here, LT and Zij denote, respectively, an edge in G incident

with the vertices vy and vj, and a cycle which contains the edge

eij; the summation in (2) is over all those cycles.

In chemistry, connected simple graphs G are used to represent

tht topological structure of compounds. In certain problems, one

considers G as constructed from two partial graphs, say A and B,



and several edges {{aAbA}1aA e A, by, € B, 1 54 ¢ 1} which connect

them:

6=AUBU{{ab,}1 2 a g 1), (2)

Obviously (A U B) is a spanning subgraph of G, and both A and B
are induced subgraphs of G [2]; see also Fig. 1.
In the present note, a formula is derived which expresses

u(G,t) in terms of A, B, and {aAbA}'

Fig. 1 G as defined by (3).

Before deriving this formula, we will introduce some further
notation and confirm some properties of G:

(i) The vertices incident with the edges connecting A and B
in G are collected in the subsets a ¢ A and b ¢ B. From the de-
finition (3) of G, it is obvious that both subsets have equal

cardinality, 1:

a = {a,|1

A
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(ii) From the elements of a and b, all the possible subsets
are formed (the empty set, ¢, is such a subset also), denoted by

EN and bp respectively:

1fy
a
iy
5

=g
iy
i

Here the index p indicates a certain combination of members of
the index set {A|1 < A < 1} which is identically the same for
[ and bp. Therefore, the cardinalities of & and bo equal each

other and obey the relation,
| = e, ] =1 (8)

Let |ap[ = [bpl = r, there are (]]_;) subsets each of equal
cardinality, r; in total there are L = 21 such subsets each. In

set theory a system as {ap} is called the discrete topology of set a.

(iii) The subsets ap and bp are thought of as being ordered
with respect to increasing cardinalities and at constant cardina-
lity, with respect to increasing numbers formed from the indices

of p as digits. Thus,

‘10 = ¢, bO = &3

a; = [a1}, b, = {by};

- : )
ayyq = [aT,az) b1+1 = {b1,b2}

a = a, b
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(iv) The edges {a,b,} will be abbreviated by a,; the set of

all these edges by a:

EA = {ayb,} (8)

al

- a = = =
= {a, " €€ 1) = {{ayby 31 < 1 2 1),
Obviously, set a is a cutset of G.

(v) Every cycle Zij appearing in (2) consists of an even
number of edges of a4 and the paths connecting them. A cycle which
consists of only two edges of a, say EK and EA, and the paths

A o B i
EA e A and PKA ¢ B leading from a, to a, and from bK to bA' res-

pectively, is called a simple cycle and, in what follows, such a

cycle will be denoted by <k,A>:

sed> = 5, U 22 U EAU 8 9)
For the sake of simplicity, from here up to eqn. (29) only the
contributions of the simple cycles to the characteristic poly-
nomial of G will be considered. In general there may be more than
one path connecting a, and a, in A, and bK and bA in B. Since A

and B are connected graphs, we have
A B
I{PKX}| 1% |{PKA]| (19)

for each pair «,A.

A

(vi) In forming the set {<«,A>} of simple cycles, each Py

is
to combine with each PEA; hence, one obtains
- = = A B
{<c,A>-3 -3} = P, 1@ 1,1,

[tk a>d] = [(R 3] [ 1BB,}].

=

X

(vii) The superset of all {pX,}, x is denoted by w®:

I
el
w

W= (PR M1 gk g h g 1) x = a,B. (12)
Obviously the cardinality of wX is given by
£
lw?| = (;) = w. (13)



(ix) Analogous to (ii), all possible subsets of disjunct

paths inclusive of the empty set are constructed from wx and de-

noted by wf:

¢§=w}‘:§wx (;é)

these are thought of as being ordered analogous to (iii), so that

X -

W=

X X

Wy = {P12}

X X
wy = {Py54!

: (15)
X _ o ooX X
W = [[912}, {P34]}

etc

As in the case of p in (5), (6), and (7), 1 represents a certain
combination of indices,
Let {wf!p =1wx|} be the set of all subsets explained in (ix) which

have equal cardinalities, p; obviously, then,

T
A
(S

(16)

it is shown in the Appendix, that the cardinality of the set

above is as follows

¥ |p =lw )] = i(2p-1)!!](§p) : (12)
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After these preliminaries, we may apply the recursion formula (2)
to G removing {a1b1} and obtain:
- - i e - s
W(G) = u(6-{a;b, N-u(6-a,=b,) z?gugG Zy) -

1
For the sake of compactness, we introduce the following abbreviations

u(G) = (6);
(G—{a1b1}) = (G- a1),

(G- al—b1) = (G- a1):

in the notation of p-polynomials, a, represents the pair of

X and bk'

Some care is required to evaluate the sum E[G—z1). First, only the

vertices, formed by a

simple cycles will be considered and their contribution to (G) will
be indicated by the index s. According to (9) we may rewrite that

term as follows:

[I(G-z1)J = % { (G=<1,1>) = J(G-<1,A>)
s A#1{<1,2>}
where the summation runs over all A # 1, and for a given A over
the whole sets {P?A} and (P?A}. With this notation, the equation
above reads

(6) = (6-a,)=(6-a,) -2t} (6-<1,1>). (18)
Applying (2) again, and keeping only the contribution of the
simple cycles one obtains straightforwardly,

(G = (G-a1-a2)=(G—a1-a2)~2tZ(G—a1—<2,A>)-

-(6-a;-a,) +(G-a -a,) +2t] (G-a ~=<2,)>) -
—2t£[(G-<1,A)-EZJ-(G—<1,R>—a2)—
-2£J(G-<1,A>=-<2,A"'>) ].

After ordering the terms and taking into account that

Ezéﬁ (G-<1,2>), we obtain for this equation:



(6) = (G-a;-a,)-(6-a,-a,)
-(G-a1—52)+(G—a]—a2)~

- 2t{J(G-<1,25)+
+ {(G-<1,A>—£2)-2(G-<1,1>—a2)+

+ 1(6-a;-<2,3>) -] (G-ay=<2,2>) + (

li—=

+ 4t22(G—<1,A>—<2,K>1.
Inspection of (18) and (19) yields:

(1) Due to the application of (2) , each term in (19) refers
to a subgraph of G which does not contain the edges removed:
sometimes they have been removed without, sometimes together with
the incident vertices.,

(2) The right hand side of (19) is a power series in (-2t)",
v=0,1,2,... where v is exactly the number of independent simple
cycles being removed from G. Since the sets of simple cycles which
are removed from G may be expressed by the sets wf defined in (ix),

it follows immediately that

(

i

Q)
(the superscript X=A,B can be deleted because in the case of simple

cycles, both sets, w? and WE are involved).

(3) The coefficients of (-2t)" are sums of u-polynomials which
contribute to the sum with a sign exactly given by (-1)|ao|; here,
ap (as has been explained in (iii)) denotes the set of pairs of
vertices, {aA’bA}’ which have been removed from G. These sums are

complete in a combinatorial sense, i.e. all combinations are taken

into account in which no cycles or only simple cycles are involved.



In view of these developments, one obtains the following ex-
pression after having applied the recursion formula k times

(1 <k < 1) to G:

6, =1 3 Le2n Wl oy lagl |
S {w ) {a )}
T p (21)
-(G-E(k,p,r)-ap—wT)}
Here, the terms have the following meaning:
a.D denotes the set of edges removed from G together with
their incident vertices;
uu,L the set of simple cycles removed from G,
w_ = {<k,x>}, (22)

T
1 < k & k, » arbitrary;

E(k,p,T) the set of edges removed from G without their in-

cident vertices.

This notation is in accordance with (ii), (iii), (iv), (12)

and (20). Since in [(G)k] , the first k edges
s
{[aAbA}‘1 £ A gk} =ak)

are removed from G (alternatively with or without their incident
vertices or as an edge of & simple cycle, but each ‘;A = {a,\bk} can

be removed only once, the three sets are related by

atk,o, 1) = atk\aNla(k) wl. (
aNiamNwl=9

lino
llw

(The index k in the lefthand side of (21) indicates how often (2)
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has been applied; of course the polynomial (G) itself is not a
function of k, but the form of the righthand side of (21) does
depend on k).

The expression (21) may be verified by means of (18) and (19). For
the proof of its validity, we use (21) as starting point for a
further application of (2). In order to obtain a synoptical nota-
tion, we will use here the following abbreviations:

(G)g= (G-alk,p,1)=a —w )

X = Bppqr X7 Bpyy

Applying (2) to (G), one obtains:
(G)g= (G-x)s—(G—x)5—2tE(G—ZX)S
It is easily seen that
(a) x in (G-X)g enlarges the original set a(k,p,1) to

a(k+1,p,7) in accordance to (23); therefore one may write:

(6-X)g = (6-T(k+1,p,7)=a -w )g - (

[IL8]

4
b) x in (G-x); enlarges By B0 85 = apU fay gt
This consequently means |ao,1-—-iarl + 1 and a(k,p,1) = alk + 1,p',1);

hence:

lagl - lasl _ .
-(-1) (G-X)g = u. = (=1) (62 (k+1,0" 1) =a =, )g (25)

The enlargement of ao to ap' also expands the range of one of the

summations indicated in (21).

(c) )._{é-Zx)s denotes z(&—<k+1 KL

where the summation runs over all k>(k+1) not occuring in Wor
X

and for each of these x's it runs over the whole sets (Pk+‘l @
'
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B ¢ 3
and {Pk+1 x}' as discussed earlier in connection with (18). Hence,
r

this term enlarges the original set w_  tow , = w_ |J {<x+1,x>}.

T’
Consequently |w./=|w_|+1 and the range of the other summation in-
dicated in (21) is expanded. Finally from (23), it follows that
a(k,p,t)=a(k+1,0,17). Taking these all together, one may write for
one of the summands
w = = .
(-2t)I Tk‘[—ztlb-zx)]s— e =
o sz 28
=(-2t) r'(G-a(k+1,p,t')-a¢-wT,k
Since the right hand sides of (24), (25) and (26) have exactly

the form of those terms which would be obtained by rewriting (21)

for [(G)kH] sthe validity of Eq. (21) is proved.
s

Hence, we may use (21) to write down the result of 1 repeated

applications of (2) to G:

[(G)]]; 11 {(-Zt)‘wH(—1)]a'p]‘-(G—E(l,p,r)—ap-w_r)}. (

s

[[1¥)
11~
—

Each term in (27) refers to a subgraph of G consisting of at least
two components, which are induced subgraphs, one of A and the other
of B. This means that each term of (27) may be represented by a
product of two factors referring to the subgraphs just mentioned.
Since the complete edge set a(l) belongs neither to A nor to B8,its
subsets a(l,p,T) appearing in {27) do not play any role in this
factorisation. In view of the symmetry expressed in (3), (7), (8)

and (15) ,one obtains immediately:

= B
(8- (1,0,T)-a ~w ) = (A-a_-w’) (B=b _—uP), ¢

[ILe]



s

=¥ ¥ = [w i gy 18,0 (aeg —uPy (Bt wioB
3 =261 (-1 Pt A a, w,) (B bn Wx)s}‘ (29).
(w_r}{ap}

For 1 = 1,2,3 one has (G)5 = (G) since all cycles construc-

ted by the use of edgeés of the cutset a of cardinality |aj g 3
must be simple cycles. But for 1 > 4, (G) differs from (G)S just
due to the existence of cycles containing 4 and more edges of a
which are not considered in (29). It depends on the actual value
of 1, whether some combinations of such cycles (1 > 8) or with

simple cycles (1 > 6} are possible or not.

Obviously, the difference between these cycles and the simple
ones is due to the choice of paths in A and B. To illustrate this
point, let us consider the cycles which may be formed by the use

of 4 edges of the cutset a, say EK, 5)\, a , and Ev. In the case

p!
of simple cycles the indices of the paths wused, say PQB and P?,n'
must coincide, namely {a,B} = {£,n}l<= {«,A,p,v}. Therefore, al-
together 6 sets of single simple cycles and 3 sets of pairs of
simple cycles may be constructed; their contribution to (G) is
considered in (29)., But there are 6 further sets of cycles which

contribute to the coefficient of (=2t) in (G) and have not been

considered in (29); they may be constructed by pairs of paths in

A A B B . z
A and B, say PuB - PYﬁ and Pgn ¥ Pf,w . Obviously the index sets
must coincide, i.e. {e¢,8,y,8} = {&,n,z,0} = {x,A,u,v}, but in

order not to repeat sets of simple cycles the requirement:

{z,6} # {E,n} # [v,8} has to be fulfilled.
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This consideration may be generalized for any value of 1,
A given set of paths, w?, as expressed in (15), defines a subset
of the linking edges, E(wf)g; &, and similarly wg defines E(wg)EE:E.
In order to construct all the cyclic contributions of (G) one has

to combine each w? with all w? which obey the side condition

A
T

= o B

a(w B
T

) = &(wg). The number of cycles originating from w and w/
is not further simply |w_| but z(w?, WS). The actual value of
this number is obtained as the number of smallest subsets into

which w? and wB may be partitioned according to

o
wi\ = U w? § wg = U wB. H (30)
vy Y {v} ¥
&(w?) = i(w?,) for each y where the w? and w?. are de-
fined by (15). From the sicde condition &(w?) = &(wg), used above
and eqgn. (23) one further obtains
2 /1 L = - B, _
a a(w?) = apf7 afw) =@ . (31)

All these considerations show in which way a final formula
for the characteristic polynomial (G) of a graph G may be derived
from egn. (29) where all cyclic contributions are taken into
account: one has to replace (i) the summation over {wT} by

summations over {w?}and {wE] where &(wg) = &(w?); (ii) the exponent

B B

B
= 1) by w . Accor

lw | by 2(?, wP); and (iii) the set w

& in (B-bo-w

ding to this one obtains the following final result:

(wA wB

Gl U) 1“

z |
_ w X o] izl L g B
6) =] 7 Y(-2¢) (-1 (A-a -w?) (B=b -w)

A B
{wT} {wc} {ap}

livo
—
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Equation (32) is of some use in a systematic investigation of

topological effects in chemistry [3].
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Appendix

Here, Eq. (17)
X X Voept 1
] 1 = = » LEELL = w(p)

is proved:

(1) Since \wf\ = p, there are p disjunct path sets {Pil} forming
wf . This means that 1 represents a certain combination of 2p
indices, taken from the 1 indices {A[|1 £ A < 1},

(2) Obviously, there are exactly(Z;)different combinations of 1
elements to the order of 2p. Each one may be realized in
several wf, because 1 indicates not only a certain combi-
nation of indices, but, according to (15), it also expresses

a certain pairing of the indices., Therefore, w(p) may be

written as a product of two factors

wip) = f(2p) -(2;)

where f(2p) counts the inequivalent pairings of 2p indices.

(3) Without any loss of generality, we may consider that combi-
nation 1, where the indices are 1,2,3,.....,2p~-1,2p. The index
2p can be paired with each one of the other (2p-1) indices;
hence, in f(2p) there is a factor of (2p-1) involving the
pairing of the index 2p with the other one. The remaining
(2p-2) indices are paired with each other in f(2p-2) different

ways. Therefore, we have the recursion formula

f(2p) = (2p-1) - f(2p-2).



Since
£(2)=1; £(4)=3,

by complete induction it follows that

£(2p) =1 + 3 + 5 = ..... » (2p-1) = (2p-1)!!
(4) Introduction of this into the expression for w(p) yields Eq.

(17}.
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Annotations

This paper replaces a paper received on 15.12.1981, accepted

for publication in Match, and cited as Ref. 9 in [3]. The re-

placement takes place because in the meantime some generali-

zation has been achieved.

*¥%*permanent address: Institute "R. Boskovi&", 41001 Zagreb,

POB 1016, Croatia, Yugoslavia.
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