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Abstract

Necessary and sufficient conditions are determined under
which a Hermitian matrix (with certain special properties)
exists, such that its characteristic polynomial is equal to
the matching polynomial of a molecular graph. The four theocrems
proved in the present study generalize a number of previcusly

obtained results [8,9,11].
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INDRODUCTION

In all theoretical schemes for calculating the resonance

energy, this gquantity is defined as

RE = E - EX

where E is the energy (or pi-electron energy) of the correspond-
ing conjugated molecule, whereas ER is the energy of a suitably
chosen reference structure. Various resonance energies which are
proposed in the literature, differ essentially in the nature

of the reference structure. In the topological resonance energy
{TRE) model f[1,2], ER is computed without the knowledge of the
actual reference structure. Although the reference energy in
the TRE model is precisely and unambiguously defined, the "lack"
of the reference structure caused some confusion among the

potential users of this method [3].

Herndon et al. [4] were the first to introduce the notion of
a kind of reference structure in the TRE model. Namely, they
discovered that for certain molecular graphs G a closely related
graph Gk with weighted edges can be constructed, such that the

characteristic polynomial of aB

coincides with the matching
polynomial [5] of G. Then, naturally, gk could be interpreted

as the molecular graph of the reference structure. Unfortunately,
the reference graph GR can be constructed only for a limited

number of molecular graphs and, in particular, Herndon's idea is

fully inapplicable to condensed polycyclic conjugated systems.
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Aihara [8] proposed a completely different approach to the
"reference structure problem". To a given graph G he associated
a Hermitian matrix H(G), (with complex matrix elements), such
that the characteristic polynomial of H(G) is equal to the
matching polynomial of G. Since the eigenvalues of a Hermitian
matrix are real, Aihara's method provided an elegant demonstration
of the reality of the zeros of the matching polynomial. The same
approach was also proposed in [9]. In both papers [8] and [9],
the consideration was restricted to monocyclic conjugated
hydrocarbons (or at most, to non-condensed polycyclic systems,
see later). In [10] the method was extended to monocyclic
heteroconjugated systems, while in [11] one of the authors
constructed the H-matrix for a symmetrical condensed bicyclic

molecule as illustrated on the example of naphthalene.

In the present paper we shall examine the construction of
H(G) matrices in more detail, with a particular emphasis to
the case of condensed polycyclic molecules. We shall demonstrate
that the H-matrices exist only under some very specific con-
ditions. A full solution of this problem will be given for the

bicyclic case.

The main conclusion of our work is that Hermitian matrices
with the desired properties do not exist for the majority of
molecular graphs and therefore the approach proposed and
elaborated in [8-11] is of limited value as a basis for
determining the zeros of the matching polynomial via matrix

diagonalization.
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The other motivation for the search for H-matrices was to
offer a proof of the reality of the zeros of the matching
polynomial in a more pictorial manner as compared to the
solution [12] reached by using completely different mathematical
techniques. Recently it was discovered [13] that the
matching polynomial of every graph is contained as a factor
in the characteristic polynomial of a certain acyclic graph;
the relevance of this result for the theory of TRE is dis-

cussed elsewhere [l4].

PRELIMINARIES

Let G be the graph representation of the conjugated system
under consideration. We shall assume that G is a simple graph,
i.e. that G possesses no loops and multiple edges; the weight
of every edge of G is equal to unity. The edges of G are not
directed, but can be always replaced by a pair of oppositely

oriented arcs.

G possesses n vertices which will be labelled by v1,v2,...,vw

The edge connecting the vertices Vj and v, will be labelled by

k
k-
The matching polynomial [5]1 of G is defined as

[n/2] :
al@ = alG,x) = £ (-1F pe,x)
k=0

2k

with p(G,k) denoting the number of ways in which k independent
edges can be selected in G, K=1,2,...,[n/2]. In addition,
p(G,0) = 1. For more details on the matching polynomial the

reader should consult the reviews [6,15].
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The adjacency matrix A = A(G) of the graph G is an n x n

matrix, whose matrix elements are defined as
Ajk = Akj =1 if the edge ejk exists in G, and

Ajk = 0 otherwise.

Then the characteristic polynomial of the adjacency matrix,
P(G) = 0(G,x) = det(x I - A{(G))
is called the characteristic polynomial of the graph G.
Let Za' a=1,...,r be the cycles contained in the graph G.
The matching and the characteristic polynomials are then related
as follows [6,16].

B(G) = a(G) - 2 T alG-Z,) +4 I al6-2,-2.)- (1)
a a<b

-8 L oa(G-Z2_-2
a

-Z2) + ...
a<b<c €

b
The size of the cycle Z_ is denoted by 1za;. Note that the
second, third, etc. summations on the right-~hand side of eg. (1)

go over pairwise disjoint cycles [1l6].

The technique used in the papers [8-11] is to construct

a matrix H = H(G) whose matrix elements are given as

ij = ij = exp (1Ojk) if the edge ejk exists in (2a)
G, and
ij =0 otherwise, (2b)

In addition, it is assumed that

;‘ij = - Ct!kj (3)
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which then implies that H is Hermitian and that
ijwkj =1 (4)

whenever the edge ejk is in the graph G. Of course, Ojk is

assumed to be real.

The idea of [8-11] was then to adjust the parameters ij

so that the characteristic polynomial of the matrix H(G),
$(H) = @(H,x) = det (xI-H)

coincides with the matching polynimial of the graph G,
@(H) = a(G). (5)

The matrix H=H(G) can be represented by a weighted digraph G*.
In order to construct G* we have to replace the edges of G by
pairs of oppositely directed arcs. A weight ij is associated
with the arc starting at the vertex V3 and ending at the vertex

V-
Because of (4),
a(G¥*) = w(G) (6)
and if V is any subset of the vertex set of G (or G%),

a(G¥-V) = a(G-V) (7)

The matrix which satisfies the conditions (2}, (3) and (5)
will be called the H-matrix of the graph G. The existence of

the H-matrix for monocyclic graphs was demonstrated in [8,9].
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In Ref. [9] a failure to construct H-matrix for naphthalene,

as an example of condensed polycyclic system, was reported. The
solution for this particular question was offered in Ref. [l1l]
by treating ij's as generally variable parameters which idea

is also used in the present paper.

GENERAL CONDITIONS FOR THE EXISTENCE OF H(G)

In this section we assume that G is a given molecular graph
and that H = H(G) is a matrix satisfying the conditions (2)
and (3). We will examine here under which conditions H(G) satisfies

also the equation (5).

Let Z be a cycle of the molecular graph G. For reasons of

simplicity we shall assume that the vertices v, and Vigl and also
14

1

vy and v 1 «.., |Z|-1 are connected in Z. Then we define

j+1r 3 T
the function t as

t = [W12 W e W‘ +

23 z|-1, |z Yzi,1

+ w1llzi w\z\,]z}—1 cee Wqy W, /20

From (2) and (3) it follows immediately that

t = ¢cos (0 + 0 + ... + 0,

12 * 933 (z{=1, ]z ¥ Qgf ) (8)

Applying the Sachs theorem [18] to the characteristic poly-
nomial of the digraph G¥ and taking into account the relations

(6) and (7), it can be shown that
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P(H) = al(G) - 2 £ t al{G-Z2_.) + 4 ¥ t t a(G-2 -2,) -
a @ a 4 @ b a b
(9)

= 8 Z tat

t 0(G=-2_-2
a<b<c G g,

-Zc) + ...

b b

which is fully analogous to eq. (1). Here and later ty symbolizes
the t-function corresponding to the cycle Za' Using the termino-
logy of [17], we recognize that the right-hand side of eq. (9

is just the p-polynomial of the graph G, the weight ta of the
cycles Za' a=12,...,r being given by formulas of the form (8).
These weights, however, are not independent quantities (as in
[171), but are functions of the parameters ejk' (The actual
independent variables in our problem are the parameters ij. They

still remain to be determined.)

From eqg. (9) we immediately reach the following result.

Theorem 1. The H-matrix exists if and only if there is a choice
of the wvariables @jk' such that the polynomial T(X),

T(x) =1 taa(G—Za) -2 W t.t

a(G-Z_-2,) + (10)
a a<b a b

b

+ 4 ) .k

t 0l(G=-2_~2.-Z }) - ...
seheE a bre a e

is identically equal to zero.

Identifying every coefficient of T(X) with zero we obtain a
system of (non-linear) homogenous equations in the unknowns ta'
a=1,2,...,r. This system has always solutions, but the obtained
ta's, a=1,2,...,r need not always have solutions in Ojk‘s,
provided, of course, that'ojk's are real.
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One solution of the identity
T(x) =0 (11)
can be immediately found, namely

t,=0 for all a = Ty dyewask (12)

We will call the system of solutions (12) the trivial solution

of the identity (11). In Thecrem 2 will be established that in
the case of the molecular graphs of condensed polycyclic systems,
the trivial solution is incompatible with any choice of the

parameters Ojk‘

COROLLARY 1.1. In the case of a monocyclic system G, infinitely

many H{G) matrices exist.

Proof. For monocyclic systems (r=1), eqg. (9) has the simple
form

P(H) = a(G) = 2t «(G=E)
and consequently,
T(x) = t al(G-2).

of course, the latter polynomial is identically equal to zero
if and only if t = O. Then from (8) we see that any choice of

the parameters @jk’ such that

+ =1+ 34

Q12 ¥ O3 % -+ Bz o1, 2t F 92,1
(J = integer)

results in a H-matrix with the required property (5).
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COROLLARY 1.2. If G is polycyclic, but no two cycles of G are

condensed, then there exist infinitely many H(G) matrices.

Proof. The assumption that no two cycles of G are condensed
means that no edge of G belongs to two or more cycles. Then
no two t-functions depend on the same variable Ojk'
trivial solution (12) represents a set of r independent equations,

Hence the

each of which can be solved in the manner described in the
Corollary 1.1.
We prove now that Corollary 1.2. can not be extended to

arbitrary polycyclic graphs.

THEOREM 2. H-matrices based on the triwvial solution of (11)

exist only for graphs, no two cycles of which are condensed.

Proof. Having in mind Corollary 1.2., we need only to demonstrate
that for graphs with condensed cycles, the trivial solution

leads to contradictions.

Let us consider first a graph GO containing only two condensed
cycles Z..l and Zz. Let 23 be the cycle obtained as the sum of

Z1 and Zz. We shall label the vertices of GD as follows.
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Hence |Z1\ =p+ 1, \22\ =g + 1 and [23| =p + q.
The vertices 3 and Vp+1
since this is the only chemically relevant case. This assumption

are assumed to be first neighbours,

has no importance for the following discussion. Arbitrary acyclic

side groups can be attached to (some of) the vertices VorVarea

and v

_1,VPJVP+2,...,VP+q_1 P+q.

-
P
Let us introduce the notation

A + 8 + yew £ 8

12 23 p=t,p"
= +suw & O + 0
B = 05,0 ptq-1,p+q pta,1’
T = Bped, 4
Then the trivial solution t1 = t2 = t3 = 0 results in the

equations
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cos(a + y) = O, (13a)
cos(B - y) = 0O, (13b)
cos(a + B) = O. {13c)

From (13a) and (13b) follows

2
¥
o™
"

+ Iw,

SIE NS

B"Y +J1TJ
where I and J are integers. There from

a4+ B=(I+J+ 1)n

which is evidently incompatible with (13c¢). Hence Theorem 2

is verified for the case of two condensed cycles.

Graphs possessing more than two condensed cycles necessarily
have a subgraph of the type Go' Then the above analysis applies
to a part of the trivial solution and shows that even a part

of this solution leads to contradictions.

This proves Theorem 2.

THE BICYCLIC CASE

In this section we shall examine in more detail the
existence of an H-matrix for the molecular graph of the type

Go given in the previous section.
Let us for brevity denote

GO—Z2 = G2, GO—Z3 = G3.
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Then according to (10),
Tix) = t1u(G1) + tza(Gz) + t3u(G3), (14)

Z, and Z

because the cycles Z1, 2

3 have common vertices and

therefore [17],

u(GO'ZI'Zz) = G(GO'Z1-Z3) = a(GO-Zz"ZS) = a(GO—Z1—ZZ—Z3) = s

Because of Theorem 2 we will not be interested in the trivial
solution t1 = t2 = t3 = 0.

We say that the cyecles gy and Z, are equivalent in the graph G,

if the subgraphs G1 = G0~Z1 and G2 = Go_ZZ are isomorphic.
THEOREM 3. If the cycles Z} and Z2 are equivalent, then H(GO)
exists.

Proof. If,G,I and G2 are isomorphic, then m(G1) = u(GZ) and by

identifying (14} with zero we get the system of equations

t1 + t2 =0
t3 =0
i.e.
cos(a + y) + cos(@ — y) =0 {15a)
cos(a + B) = O.

It is now easy to verify that the system (15) has (infinitely

many) solutions in the variables o,B8,y.

The H-matrix of naphthalene [11] is an example of application
of Theorem 3. The actual form of the matrix follows directly from

the solutions cof the equations (15).
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COROLLARY 3.1. If u(G1] = u(GZ), respective whether Gl and G2

are isomorphic or not, H(GO) exists.

In the case when the cycles Z1 and Z2 are non-equivalent,

we will distinguish between three possibilities:

21 and 22 are of different size;
21 and z2 are of equal, odd size;

Z1 and 22 are of equal, even, size.

THEOREM da. If a(G,) # a(G,) and |Z1| # lzzj, then the H-matrix

of GO does not exist.

Proof. Using the previously adopted notation, !Z1| = p+1,
{22! = g+1 and Lza{ = p+q. Without losing the generality of

our proof, we can assume that ]Z1| < |z that is, p < q.

il

Note that it is also [Z,| < |2z,

Now, the degree of the polynomials a(G1), u(Gz) and a(G3)

is n-p-1, n-g-1 and n-p-q, respectively. Then also T(x) in

n-p-1,

eq. (14) is a polynomial of degree n-p-1. Identifying the x

-coefficient of T(x) with zero, we obtain t1I = 0. Then T(x)

becomes tza(Gz) + t3a(G3), a polynomial of degree n-g-1.

Identifying the 1 _coefficient with zero, we obtain t, = 0.

Applying this argument once again we can also deduce that t3 = 0.
But by Theorem 2 the system t1 = t2 =ty = 0 is not solvable.

Therefore the construction of H(GO) is not possible.

THEOREM 4b. If a(G;) # «(G,) and |Z,| = |Z,| = odd, then the

H-matrix of GO does not exist.
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Proof. Note first that if |2.| and |Z,| are odd then {23| is

1 2!
even. Then directly from the definition of the matching poly-
nomial follows that if a(G1] is a polynomial of odd powers of x,

then a(G3) is a polynomial of even powers of x, cor vice versa.

In addition, 2|Z1\ > |23|'

Therefore, ¥ P 9 coefficient of T(x), eq. (14), must be

equal to zero. Hence we obtain t3 = 0. Then T(x} = O gives the

set of equations

1
O

t, P{G,,k) + t,p(6,.k)

for k = 0,1,... Setting k = 0 we deduce t_I + t2 = 0 (because

of p(G1,0) = p(GZ,O) = 1), which implies
t-] [p(G1 lk) = p(Gzlk)] =_0

fer k = 1,2,... . Now if we set t, = 0, then also t2 =t, =0

1 3

which is impossible. If, however, we set t1 # 0, then it must
be p(G1,k) = p(Gz,k) for all k, i.e. a(G1) = a(Gz), contrary to
what was initially assumed.

Therefore no H-matrix exists.

THEOREM 4c. If «(G,) # a(G,) and |2,] = [Z,| = even, then the
H-matrix of GO exists if and only if the following identities

are simultaneously fulfilled:

p(G1,k) = p(GZ,k) for 0 < k < K (16a)
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and
P(Gq,k) = p(G,, k) + p(Gy,k-K)[p(G,,K)-p(G,K)] (16b)
for k > K,
where K = [2,|/2-1 = |z, [/2-1.

Proof. The identity T(x) = O is equivalent to the system of

equations

t1p(G1,k) %+ t2P(G2'k) = 0; k = 0p1paee,K=1

t1p(G1rk) o g tZP(Gzlk) g t3P(G3:k'K) =0, k = K1K+1!---

First, it can not be t1 = t2 = O, because then for k = K we
would have t3p(GB,0) =0, i.e. t3 = 0. Second, for k = 0 we
have p(G1,k) = p(GZ,k) = 1 and therefore t,1 +t, = 0. Therefore

ty = =ty # 0.
Dividing the above equations by t1 # 0, we get

p(G k) - p(G,,k) =0, 0 <k <K

PG ,k) = pP(G,y,k) + (t3/t,)p(G;,k-K) = 0O, k > K.

Finally, for k = K, p(G3,k—K) = p(GB,O) = 1 and thus
(t5/t)) = =[p(G,,K) - p(G,,K)]. The equations (16) follow

now straightforwardly.

COROLLARY 4.1. The graphs considered in Theorem 4c have no

H-matrix if for at least one k, O < k < K, p(G1,k) # p(Gz,k).



COROLLARY 4.2. The graphs considered in Theorem 4c have no
H-matrix if for at least one k, k > K, p(G1,k) = p(Gz,k) and

p(G3,k) # O.

From Theorem 4c we see that the existence of H-matrix in the
case when the non-equivalent cycles Z1 and 22 are of equal size
is a rather complicated question. Whether the equations (16) are
fulfilled or not, depends on the finer details of the structure
of the graph Go. Both cases can occur. For example, the graph GA
fulfills all the identities (16) whereas the graph G_ does not.

B
Therefore H(GA) exists, but H(GB) does not.

Ca Cg

ON THE TRICYCLIC CASE

For particular tricyclic cendensed molecular graphs the

H-matrix exists. Let us consider the graph G4
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with three equivalent cycles Z1, 22, Z3, i.e. with G5 = G4—Z1

6 G4—Zz and G7 = G4—Z3 being isomorphic. Hence G8 = G4-Z4,

Gg = G4-25 and G.10 = G4—26 are isomorphic too, where ZQ = 21 UZZ

Q
1]

Zs = Z2UZ3 and Z6 = Z1l)23, respectively. Then according to

definition (10)

T(x) = tsu(Gs) + t6a(G6) + t7a(G7) + tSG(GBJ +
(17)
* TgolGg] W Byab Byl + EyglE L)

where G11 = G,-2, and 2

4 77

zero one gets the following system of equations

5 = Z1L}Z2{)ZB. Identifiying T(x) with

te +t, +t, =0

5 6 7

tg + tg + £, =0 (18)

t11 =0
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because of a(Gs) = u(G6} = u(G7), u(GB) = a(Gg) = a(G10) and
using the fact that a(Gs), u(Gs) and a(G11) are polynomials of

the mutually different order. Let us introduce the notation

O3 ¥ 034 % con + 0,4 o =Ty
ep,pﬂ & Gp+1.p+2 Foere * O9p3,2p-2 7 T2 (19)
BZp-Z,Zp—1 + 02?-1,2p H e A e3p_5'2 = T,
91 =~ Tar By ap-z ™ Tsr Upq =
Then eqgs. (18) read as
cos(11+r4—T6) + COS(TZ—TS"T4) + cos(13+r5+16) =0

(20)
cos(11+12-15—76) + COS(T2+T3+16'T4) + c05(11+13+14+15) =0

cos(r]+12+13) =0

and the system has infinitely many solutions. A particular

"symmetrical" solution is given by
o = =X 3 = = = T
TSy = Iy San Ty Tg T, Te 3 (21)

In the general case of tricyclic graphs the H-matrix does
not exist. In particular, it is not possible to construct the

H-matrix of the molecular graph of anthracene [19].
CONCLUDING REMARKS

The main conclusion of our work is that the H(G) matrices
do not exist in the general case. Therefore the idea to use

the computational advantages of the determination of the
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eigenvalues of H(G) instead of the tedious calculation of the

zeros of the matching polynomial of G, must be abandoned.

In Theorems 1 and 2 we formulated general graph-theoretical
criteria of the existence of H(G). Then a complete solution of
the existence problem is obtained for the class of monocyclic

(Corollary 1.1) and bicyclic graphs (Theorems 3 and 4).

Our method is in principle capable to treat alsoc the case
of tricyclic, tetracyclic, etc. graphs, but the mathematical

difficulties of such an analysis would be considerable.

Thus the question of the reference structure in the TRE model
remains without a satisfactory answer. If this problem is of
any relevance [3], then a completely different approach should

be invented for its solution.
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