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Lower and upper bounds (4), (5) and (&) are obtained
for the smallest positive eigenvalue of a bipartite
molecular graph. Analogous inequalities (7), (8) and
(9) hold for the smallest positive zero of the match-
ing polynomial.



The smallest positive eigenvalue h of a bipartite
molecular graph is of considerable importance in the

e of conjugated %electron systems

topological theory
since it is closely related with the energy of the high-
est occupied molecular orbital {as calculated in the
Hiickel approximation) and with the so called HOMO-LUMO
separation. It is a well-known fact that h can be cor-
related with a number of measurable physico-chemical
properties of alternant conjugated hydrocarbons (pola-
rographic oxidation half-wave potential, ionization po-
tential, energy of the first Jr""ﬂ.'. transition, energy
of the charge-transfer transition of iodine complexes
etc.)e. In the case of non-alternant hydrocarbong

(which are represented by non-bipartite molecular graphs)
such correlations are less satisfactorya‘a.

The question how h depends on the structure (i.e.
topology) of the conjugated molecule was considered in
several recent publications“’B. Nevertheless, a comple-
te solution of this problem has not yet been reached.

In fact, it is rather little known about the smallest
positive eigenvalue of graphs and matrices.

In the present paper we offer lower and upper

bounds for h.

If the molecular graph is bipartite, then the per-
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tinent conjugated molecule is said to be alternant.
A graph is bipartite if and only if it contains no odd
cycle.

The eigenvalues of the adjacency matrix of a graph
G are called the eigenvalues of this graph; they form
the spectrum of G. (For further details on graph spec-
tral theory see the booke.)

Let G be a bipartite (molecular) graph with N ver-
tices. Let x1:2-x2:2-°'-2?-XN be the eigenvalues of

G. According to the Pairing theoreml,

%5 = TH-ja

for J = 1;24ee45N0

In the following we shall consider the class of
bipartite graphs for which all eigenvalues differ from
zero. It immediately follows from the Pairing theorem
that such graphs must have even number of vertices. If
N = 2n, then the smallest positive eigenvalue of the
graph G is x, that is x, = h.
i In other wordsl we shall restrict our considerati-

ons to those alternant conjugated systems which have no

non-bonding Htickel molecular orbital.” All stable al-

* There exist various graph theoretical procedures by

which one can easily determine whether a conjugated

1,7

molecule has non-bonding molecular orbitals or not. ?
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ternant hydrocarbons belong to this classl’7.
In the subsequent discussion the following spectral

properties of the bipartite graphs will be frequently

used:
2 18
x. = =-E {1)
j L]
31 S
B o= ¥, (2)
j=1
n
xj = A L] (5)
J=l

where E, M and A are the total J@:electron energy, the
number of carbon-carbon bonds and the algebraic struc-
ture count, respectively, of the pertinent conjugated
hydrocarbonl. The number of vertices of the graph con-
sidered is 2n. Note that in the case of benzenoid and
acyclic conjugated systems, the algebraic structure
count A is equal to the number of Kekulé structural

formulass.
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The First Inequality

LE: aj and bj’ J = lyes.y,m are real numbers, then

by the Cauchy inequalityg,

m

( iad by )aé(i ade)(Z bja) .

J=1 J=1 J=1

By setting aj =1, b'j = xj and m = n-1 it follows

n-1 n-1

() P L@~ =° .,
J=1 EEal

Taking into account egs. (1) and (2) and the fact that

x, = h, we obtain

(g E-h2 <L (a-1)M- 1)

i.e.

2

EE
nh -Eh+--(n-DK L0

i.e.

e S )
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where

Q=V(o-1(2uN-E) .

This are our first bounds for h.

10 oMy - E2> 0 and thus

It should be noted that
Q is necessarily real. For certain graphs the lower
bound in (4) may be negative. Therefore (4) can be

slightly improved as

mu{o,E—ﬁ—Q}éth—ﬁ—q y

Equality on the both sides of (4) is obtained for the
path P2 with two vertices (for which h =M =1, N =
=E=2)o

The Second Inequality

If 8359 J =1lyeee,m are non-negative real numbers,

then their geometric mean is not greater than their

9

arithmetic mean”,
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By setting ay = x5 and m = n-1 and using egs. (1)

and (3) we obtain the inequality
= 1
WP L GE-w/-1) .

1
Since % E-h< > E, we further deduce

1
T < B
2(n - 1)
i€
N -2 n-1
h A W
>[4

A lower bound for h is obtained if we take into account
that h is smaller than or equal to unity (see later).

Then A/h>A and

1
AT LGE- /- 1)
i.e.
1
115;% E-(n-1) A" T

Consequently, our second bounds for h read

N -2 n-1
5 o

E

1

E-(n-1) %1, (5

o=



Equality on the right-hand side of (5) is obtained again
for the path P2 with two vertices.

The Third Inequality

If the algebraic structure count of G is equal to
unity, then eq. (3) implies Xy XpeeeX, g h = 1. BSince
by definition all the eigenvalues XysXpyeesyX, o BTE not
smaller than h, it is evident that h cannot be greater
than unity. Therefore for all bipartite graphs for which

A =1, we have
haald . (6)

According to the author’s opinion the validity of
the inequality (6) is much wider. We present here two
gstatements for which no proef is available at the pre-
sent moment,

CONJECTURE 1. The inequality (6) holds also for bipar-
tite graphs which have A > 1.

CONJECTURE 2, The inequality (6) holds for all graphs

which have equal number of positive and negative eigen-

values and which have noe zero eigenvalue.

Bounds for the smallest positive zero of the

matching polynomial

The matching polynomial of a graph was defined within

a novel theory of aromaticityll. (For details on the
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matching polynomial see the reviewle.) There exists a
far-reaching analogy between the eigenvalues of a bi-
partite graph and the zeros of the corresponding match-

ing polynomialla. If these latter zeros are denoted by

y1>yg>oo' }yN, then
T3 = “IN-j41
for Jj=1l424e+e4Ne Furthermore, if N = 2n, then

n

Z’J‘%Eﬁ

J=1

n

Zyaz‘“

j:l
n
l—'yj ,-\/i_
3

where Ep is the reference energy in the topological re-
sonance energy methodll , and K is the number of Kekulé
structural formulas of G. Note that the difference

between the total jcelectron energy and the reference
energy is called the topological resonance energy, TRE,

If In = hR is the smallest positive zero of the



i B =

matching polynomial, then a fully analogous reasoning
as described in the previous sections leads to the in-

equalities (7)-(9).

E, - Q E, + Q

where

QR \j(n— 1)(2MN-ER2) .

not

N -2 n-1 i 1
\[E[ ERJ &t S~ =T EE o 08

For all graphs for which K =1,

hy <1, (9)

CONJECTURE 3. The inequality (9) holds also for graphs
for which X>1.

The difference h = hR can be interpreted as the
Jjoint effect of all cycles of the conjugated system on
the highest occupied MO energy 1evel5. Several topolo-
gical properties of h - hp have been establishedE.
Combining (4) and (7) we can derive also an upper and

lower bound for h - hR’ namely
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TRE - (Q + Qp) TRE + (Q + Qg)
N R N

IN
N

where

1

3.
4

Se
6.

e

TRE = E - E .

REFERENCES

A.Graovac, I.Gutman and N.Trinajstié, Topological Ap-
proach to the Chemistry of Conjugated Molecules,
Springer-Verlag, Berlin 1977.

AJ.Streitwieser, Molecular Orbital Theory for Organic
Chemists, Wiley, New York 1961.

J«.Michl and E.W.Thulstrup, Tetrahedron 32, 205 (1976).
G.G.Hall, Mol.Phys. 33, 551 (1977);

I.Gutman and D.H.Rouvray, Chem.Phys.Letters 62, 384
(1979);5

A.Graovac and I.Gutman, Croat.Chem.Acta 53, 45 (1980).
I.Gutman, Z.Naturforsch. 35z, 458 (1980).

D.Cvetkovié, M.Doob and H.Sachs, Spectra of Graphs.
Theory and Application, Academic Press, New York 1980.
T.Zivkovié, Croat.Chem.Acta 44, 351 (1972);
D.Cvetkovié, I.Gutman and N.Trinajsti¢, J.Mol.Struct.

28, 289 (1975).



- 86 -

8. M.J.5.,0ewar and H,C.,Longuet-Higgine, Proc.Roy.Soc.
(London) A 214, 482 (1952);

C.F.Wilcox, Tetrahedron Letters, 795 (1968).

9, See for example: G.H.Hardy, J.E.Littlewood and G.
Pblya, Imequalities, Cambridge University Press, Cam-
bridge 1952.

10, B.J.McClelland, J.Chem.Phys. 54, 640 (1971);
I.Gutman, Chem.Phys.Letters 24, 283 (1974).

1l. J.Aihara, J.Amer.Chem.Soc. 98, 2750 (1976);
I.Gutman, M.Milun and N.Trinajstié, J.Amer.Chem.Soc.
99, 1692 (1977).

12, I.Gutman, Match 6, 75 (1979).



