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BRAVAIS GROUPS IN LOW DIMENSIONS

by Wilhelm Plesken

Abstract: Algorithmic methods to compute Bravais groups are described.
Full sets of representatives of the Z-classes of all Bravais groups
of degree 5 and of the irreducible Bravais groups of degree 6 are
given.

I. Introduction.

A Bravais group B is a finite unimodular group (abbreviated f.u.
group) for which there exists a set S ¢ RV of symmetric matrices
(which are interpreted as gquadratic forms) such that

B = B(S) := (g € GL(n,Z) | g°¥Xg = X for all x € §).

(The transposed of a matrix g is denoted by gtr.)

A Bravais group can be viewed as the full automorphism group of a
suitable lattice in Euclidean n-space since the set S mentioned
above can be assumed to consist of one positive definite form

{cf. [NPW 80]1). Dually to the definition of the Bravais group B(S)
of a set of symmetric matrices S the space of quadratic forms fixed
by a f.u. group G(< GL(n,Z)) is defined by

RN *N | tr bt

s(e) 1= {8 € 8 =8, g °8g=58 forall g€ G) .

Finally the Bravais group B(G) of the f.u. group G 1is defined by
B(G) := B(S(G)) . (cf. [BNZ 72,73] Part III, [BBNWZ 78]). Clearly
the following holds: G < B(G) , B(B(G)) = B(G) and B(G) is finite
for each f.u. group G

In [Ple 77] I have described the Bravais group of a given reducible
f.u. group. It turned out that for each reducible f.u. group G the
"reduction pattern”, i.e. the number and degrees of the G-irreducible
constituents and the binding systems are the same for G and B(G) .
In Chapter II of this note this description of Bravais groups is
refined in such a way that one can outline an algorithmic procedure
to obtain all reducible Bravais groups in a given dimension once

certain irreducible f.u. groums in all lower dimension are known.
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The procedure also simplifies the recognition problem considerably,
namely to identify the & -class of the Bravais group of any reducible
f.u. group in a list obtained by the suggested algorithm.

The method is applied to the five dimensional case. A complete list
of a set of representatives of the Z-classes of the Bravais groups
of degree 5 can be found on the attached microfiche. A summary and
explanations are given in Chapter III. The irreducible Bravais
groups of degree 5 are taken from [P1P 78,801 Part I (cf. also
{Biil 73] and |[Rys 72] ). Lists of Bravais groups of degree smaller
than 5 are contained in [BBNWZ 78], In [P1P 77,80] Part I-V the ab-
solutely irreducible (i.e, C-irreducible) maximal finite subgroups
of GL(n,Z) for 5 <n <9 are determined up to Z-equivalence.
These are also the absolutely irreducible Bravais groups in
these dimensions. As already noted in [PlP 77,80] Part I irre-
ducible groups in prime dimensions are already absolutely irre-
ducible. The same holds for the nine dimensional case., Hence for n
smaller than 10 only n =6 and n = 8 are the only dimensions
for which the irreducible Bravais groups are not known. Therefore
we derive the irreducible, not absolutely irreducible Bravais groups
of degree 6 in Chapter IV, None of these Bravais groups are maximal
irreducible subgroups of GL(6,Z). With the results of Chapter II
it should be possible to compute the missing Bravais groups of
degree six and seven.

I1. The reducible Bravais groups of a fixed dimension.

Among the reducible f.u. groups the fully decomposable ones are the
simplest examples. Therefore it is desirable to relate an arbritrary
reducible f.u. group to a "canonical" fully decomposed f.u. group
which is rationally equivalent to the original group. However, this
does not seem to be possible in general. The "almost decomposable"
f.u. groups might serve as a substitute.

(II.1) Definition. A finite subgroup G of GL(n,Z) <s called
almost decomposable, if for each character X afforded by an




= GG

irpeducible rational representation of G the matrix

-1
x(g )g

o
5, B X (1) E
% Gl gé€G

is integral, where x2 is some C-irreducible constituent of x .

DxN - commuting with the elements

Note that e is an idempotent in @
of G ([Isa 76] pg. 19). Clearly o is zero if ¥ is not a
constituent of the character of the natural representation

bt G +GCL(nZ) : g +9 of G,

1f G 1is almost decomposable the natural G-lattice L =4 o] splits
into the direct sum of the G-lattices eXL with ¥ running through
the set Irr(A) of the characters of the (QO~)irreducible constituents
of a :

L = L] e L .
X€Irr(a) X

By choosing Z-bases for each of the e L and joining them together
to a Z-basis of L , one sees that G is Z ~equivalent to a
group H of block diagonal matrices diag(h1,...,hl) where

1 = |Irr(A)] and the block degrees are multiples n (1) of x (1)
for x € Irr(a) . The constituent group of the matrices in the j-th
block is irreducible if the corresponding nX is equal to 1, As
pointed out in [BNZ 72,73] Part I the most difficult task for com-
puting reducible f.u. groups is to derive the Z -classes of those
constituent groups for which nX is bigger than 1. It should be
noted, however, that for degrees < 7 such a constituent group must

already be fully decomposable except if it is isomorphic to D8

(dihedral group of order eight), A4 (alternating group on 4 elements)
or C2 x A4 (cf. [Ple 78]). These are also the cases in which almost
decomposable f.u. groups might not be fully decomposable

(for degree < 7).

Being almost decomposable is a property of the Z-class of a f.u.
group in the sense that each f.u. group in a Z -class is almost
decomposable if one group of the Z-class has this property.
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Within a Q-class of a f.u. group there might be more than one

Z -classes of almost decomposable f.u. groups. However the preceed-
ing discussion suggests to associate with any f.u. group G the
uniquely defined £Z -class of f.u. groups belonging to the action of

G on T = & e 5 =22 , i.e. the Z -class of all x"Tex
x€Irr(a) X
where X 1is the matrix of the basis transformation of the standard

basis of L to some basis of T, . This £ -class is denoted by G .

As for the Bravais groups, it is now possible to associate a £ -class

of almost decomposable Bravais groups with any Bravais group.

(II.2) Definition. Let B < GL(n,L) be a Bravais group, By P(B)

we denote the L -class of all almost decomposable Bravatis groups
B(H) , where H belongs to the Z-class B (defined above).

The definition of almost decomposable Bravais groups associated with
arbitrary Bravais groups is connected with the intuitive notion of
primitivity of lattices in cristallography. Forf convenience let
P(B) also denote some fixed representant of the &£ -class P(B) .
Clearly B is rationally equivalent to a subgroup of P(B) . That
this might be a proper subgroup can already be seen in three dimen-
sions where a Bravais group B of order 12 exists such that P(B)
has order 24. Note that B and P(B) always belong to the same
crystal family (cf. [NPW 80]). If the natural representation of B
is irreducible, then B € P(B). In low dimensions it is easy to write
down a list of the Z -classes of the almost decomposable Bravais
groups. There are conly 1,4,8,31, resp. 51 almost decomposable
Bravais groups up to £ -equivalence in 1,2,3,4, resp. 5 dimensions,
whereas there are 1,5,14,64 resp. 189 £-classes of Bravais groups
falling into 1,4,6,23 resp. 32 crystal families (cf. also [Jar 79]
for numbers of crystal families).

The aim of this chapter is to describe for all reducible almost decom-
posable Bravais group P the set of 4 -classes of all Bravais

groups B with P € P(B) . To this end let P be a reducible almost
decomposable Bravais group and denote by Min(P) the set of all sub-
groups H of P with
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(i) B(H) =P
(ii) for each proper subgroup G of H the Bravais group of G
is properly contained in P, i.e. B(G) * P
(In the terminology of [BBNWZ 78] Min(P) consists of the minimal
subgroups of P belonging to the Bravais flock of p.) Let L = an1
denote the natural lattice of P and A the natural representation.

The canonical decomposition

=S

L
X

S
X € Irr(a)

of L is the same for P and all the groups in Min(P) . Consider
the set CenP(L) of all subgroups L' of L for which the following
holds:

(i) There exists a group H € Min(P) such that L' is an

H-gublattice of L , i.e. HL' = L' ,
(ii) exL‘ = eXL for all % & Trrial) .

Note that CenP(L) is a finite set, indeed by the definition of e
one has |PIL < L' <L for all L'E€ CenP(L) . The point about

X

intreducing Ceny(L) is that it is a relatively easy computable set
yielding all Bravais groups B with P € P(B) . Namely let the

columns of X € Pt form a basis of L' € CenP(L) . Then
By o2 x~1 px M GL(n,z) is a Bravais group with P € P(PX) . The
proof is immediate from [Ple 77] : Because of the definition of

1 1

Cen,(L) one has E(XPXX_ ) = P, since XPXX_ is the biggest sub-

group of P leaving L' invariant. From [Ple 77] one gets

L L' where A' 1is the natural representation of the

= € e
W€ Trr(aty Y

Bravais group B(P,) of PX . Hence B(PX) also leaves L invariant.

But Py is the biggest f.u. group leaving xtrS(P)X = S(PX) and L

invariant, i.e. B(PX) =P Now P € P(PX) is clear.

X
Hence one obtains a mapping of CenP(L) into the set of all Bravais
Z-classes of Bravais groups B with P € P(B) . This mapping is
surjective by definition of P{(B) and CenP(L) . Unfortunately the
mapping is not always injective, i.e. there might be several lattices

in CenP(L) giving rise to the same ¢-class of Bravais groups.
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This is because the normalizer of P in GL(n,l) acts

NoL(n, &) ®)

on CenP(L) via gL' ={glll1l€ L'} for all and

N P

g € GL(n,Z)(

all L' E€ CenP(L) , such that two lattices in the same orbit give
rise to the same Z-class of Bravais groups. This follows immediately

from the characterization of normalizers of Bravais groups given in
[BNZ 72,73] Part III:

Nep(nz) (B =19 € GL(nd) | ¢ Ts(R)g = s(P) }.

Moreover two different orbits yield different £ -classes of Bravais

groups, as will be shown in a moment.

(II.3) Theorem. Let P be an almost decomposable (reducible) Bravais
group with natural lattice L =1 mxl o thepe is a 1-1-correspondence
between the L-classes of Bravais groups B with P € P(B) and the
orbits of Ceny (L) under the action of the normalizer NGL(n,Z)(P)

of P in GL(nZ) ,

Proocf: All that remains to be proved is that two lattices of
CenP(L) in different orbits under the action of the normalizer define
different Z-classes of Bravais groups. Let L, and L, be two

lattices in Cenp(L) giving rise to the same Z -class of Bravais

groups. Define subgroups By = {ge P | gLy = Li } for i =1,2 of B.
There exist bases of L, and L, such that P_ = X, H,X =
1 2 X 171
= X;1H X, =P where the cclumns of X, elxixn form these bases of
272 X2 i
Ly for i=1,2 . Let h = x2x1_1 . The proof is complete if one
shows hL, =L, and h € NGL(n,Z)(P) . But the first claim follows
immediately from Li = xiL for i =1,2 . As for the second state-
ment one sees immediately ntTs(P)h = S(P) . Hence by the characteri-
zation of N (P) quoted before the statement of the theorem
GL(n,Z)
hL = L. remains to be proved. But L = @ e L; for 1 = 1,2 ,
xeIrr(a) X
where A is the natural representation of P . On the other hand,

since B(H1) = B(Hz) =P , it is clear from earlier remarks that
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{ex | x€Irr{a)} = {ex I x €Irr(a)} for i = 1,2 where 4; is
the natural representation cof Hi {i=1,2). Since h conjugates H2

to H1 , it alsc conjugates the idempotents ey with x € Irr(Az)

into the e with x € Irr(Al) . Hence
h=h & B B e hexh_1hL1 = ® 8L, =T «
XEIrr(4,) x X€Irr(4,) X€Irria,) *

q.e.d.

The computation of the Z-classes of reducible Bravais groups in a

given dimension n as suggested by Theorem (II.3) proceeds in four

steps:

() FPinding a set 8 of representatives of the £L-classes of the
almost decomposable (reducible) Bravais groups.

(i1} Computing CenP(L) {L = natural lattice of Pl for sach P g 8 ,

i.e. by
a) Finding Min(P)
b) Computing the H-sublattices L' of L with exL’ = eXL

for all X € Irr(A), where A <8 the natural representation
ar .
(tiZ) Computing the orbite of CenP(LJ under NGL(H,Z)(P) 8

(iv} For each representative lattice L' of the orbits in CenP(L)

compute H(L') = (K € P | hL' = L'} . Then ¥ ‘H(Z')X 4e the

nan

assoctated Bravais group, where the columns of X € & form

a &-basiec of L' .

As mentioned earlier eight is the first critical dimensicn as far

as (i) is concerned. Step (ii)a wusually is a simple exercise in
elementary group theory. Actually it suffices to compute the groups
in Min{P) up to 4-equivalence, because two Z -equivalent groups
of Min(P) are already conjugate in NGL(n,Z)(P) = {ii)a 1is the

heart of the matter, By a slight variation of the centering algorithm
developed in [Ple 74] (cf. also[P1P 77,80] Part I) these sublat-
tices can be computed in a very dfficient way on a computer.

Step (iii) might cause some difficulties, since N (P) 1is not
GL(n,Z)
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always finite. However Cen, (L) is finite. Only very rarely one actu-
ally needs a set of generators for N -y (P). In this case the rea-
GL(n,Z)

der is referred to [ BNZ 72,73] Part III. Finally step (iv) is straight-
foreward again. However the index of H(L') in P might be bigger
than one is used from dimensions 3 and 4. For instance in [Ple 78]
{Theorem V.3.,) a maximal finite reducible subgroup B of GL(6,4) is
constructed, such that the 3-dimensional constituent groups are not
maximal finite subgroups of GL(3,Z) and no Bravais groups. In this

example the group orders are |B| = |H(L')| = 26-3 and
IP] = 27+37,
An easy example might serve as an illustration,

(II.4) Example: P = {diag(aj,az,as) | a, =+1} 28 an almost decompo-

3x1

sable Bravais group of degree 3 with L =7 as natural lattice

The normalizer N = NGL(S,l)(P) t8 the full monomial group of order

48. Min(P) consists of the N-conjugates of <{diag(-1,1,1), diag(1l,-1,1)}

and {diag(1,-1,-1), diag(-1,1,-1)) . CenP(L)- consist of six lat-

tices, all of which contain 2L. They fall into four orbits of length
L 1,3,1,1 wunder the action of N, All four Bravais

groups are in the Q -class of P .

Theorem (II.3) does not only simplify the derivation of Bravais groups
but also the recognition problem. Assume ¥ 1is a list of representa-
tives of the Z-classes of Bravais groups in dimension n , which has
been produced by the method described above. Let G be some f.u.
group of degree n . The problem is to decide which of the groups in
¥ is Z-equivalent to the Bravais group of G. One first has to de-
cide which of the groups in £ 1lie in P(B{(G)), i.e. is in the Z-
class of the associated almost decomposable Bravais groups. Then one
has to identify the orbit of the natural lattice of G under the
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action of the normalizer of some representative of the associated al-

most decomposable Bravais groups.

III. The Bravais groups of degree 5.

There are 32 crystal families in five dimensional space (cf. also
[Jar 79]). Let G be some f.u. group of degree n and
A: G- GL(nZ): g - g the natural representation of G. Then A is

raticnally equivalent to a fully decomposed representation:

s
8~y 15=91 a; Ay

where a; € N and the Ai are rational irreducible representations

(1 <i < s), no two of which are rationally equivalent. Let ni be

the degree of Ai. The A; can be ordered in such a way that

n, 2N, > ... >ng and whenever n, = n, . the inequality a; = a5

holds. The (a1+...+as)-tup1e

(n fDg, D ,nz,...,ns,...,ns) will be called the decomposi-

\__Y__J

a.l a2 a.s

Qe PEEEE

tion scheme of G , where the bars above the ni's are omitted if

a; = 1 (1 £1i < s). For instance an irreducible group of degree n

has (n) as decomposition scheme; (TTTTT), (7,7,1), (2,1}, (3) are
the possible decomposition schemes of f.u. groups of degree 3. It
follows immediately from [Ple 77] or [Jar 79] that the decomposition
scheme is a family invariant, i.e., all f,u. groups within the same
crystal family have the same decomposition scheme. The second impor-
tant family invariant is the dimension of the space of quadratic form

fixed by some group in the crystal family.

The following table gives a systematic account on the distribution of
Z-classes of Bravais groups into crystal families for the five dimen-
sional space. The first column contains the number of the family start-
ing with those families having form spaces of highest dimension. These

dimensions are listed in the third column (number of parameters). The
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second column gives the decomposition scheme defined above. In the
fifth and sixth column (number of 4&-classes of a.d. Bravais groups,
isom. types of a.d. Bravais groups) the number of £-classes and the
isomorphism types of the almost decomposable Bravais groups in the
corresponding family are given. The following notation is used: Cn

cyclic group of order n, D2n dihedral group of order 2n, Sn sym-

metric group on n elements, GxH direct product of G and H,

n

G ~ Sn wreath product of G by sn of order IG}n-n!, G direct

product of n copies of G , W(F4) Weylgroup of root system F4.

Finally the last column gives the number of £ -classes of Bravais
groups in the family. If there is more than one £ -class of almost
decomposable Bravais groups in the family, the entry in the last col-
umn is given in the form r, +...+ r_  where r, (1 <1 < s) is the

number of £-classes of Bravais groups associated with the ith Z-
class of almost decomposable Bravais groups as described in chapter Il



Family
number

11
111

v

VI
VI

VIII

XI
¥IT
XIIT

XIv

VI
XVII
IWIIL
XIX
.94

XXI
XXII

XXIII

XXIV

XXV
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5-DIMENSIONAL BRAVAIS GROUPS

decomp.
scheme

(T, 7,7, 1,M)
(T, 1,1,1,1)
(T, 1,7,7,7)
S A B

(1,7,7,1,1)

(2,1,1,1)

(2,1,1,1)
(2,1,1,1)
(

2,1)

LS

|

B

2
r '1)

3
(2,2,1)
(212P1)

(2,2,1)
(3,1,1)
(4,1)

(4,1)
(4,1)

number
of para-
meters

15
11

w

numb. of
Z-cl. of
a.d.Br.gr.

1
1

isom, types of
a.d.Bravais gr.

Dy2%¢;
(c2m33)xc2

number of
Z -classes
of Bravais
groups

1
2

<]

15

24342
2+2

3+2+1



Family
number

XXVI
XXVII

XXVIII

XXIX

XXX

XXXI

XXXII
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5-DIMENSIONAL BRAVAIS GROUPS

decomp. number numb, of isom.types of
scheme of para- Z-cl, of a.d.Bravais gr.
meters a.d.Br.gr.

(3,2) 2 3 (C2NS3)xD8

(3,2) 2 3 (C2ms3)xD12

(4,1) 2 2 (czms4)xc2,
W(F4)xc2

(4,1) 2 2 (D;,v8,) xCy,
(Cyx (Dgvs,) ) xC,,

(4,1) 2 2 (C,x85) xC,,

(5) 1 3 CyvSg

(5) 1 4 C,xS

26

number of
L -classes
of Bravais
groups
24241
142+2

242

2+2

3+1

T+14+1

T+1+1+1
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The table can be used as a guide for reading the attached microfiche.

The Bravais groups are listed there in the same order as in the table.

for each family the following information is provided by the micro-

fiche:

a) The form space of a "natural" representative P the Z-classes of
almost decomposable Bravais groups of the family.

b) For each P under a) the order |P| of P.

c of the

For each P under a) a set of representatives L,,...,L

1 r (P)

orbits of Cenp(15x1) under the action of N )(P) in the form

GL(n,&

of matrices X1,..., € 25'5 such that the columns of xi form

Xr(P)
a basis of L.l (1<i<r(P)). (The r(P) are listed in the last column

of the above table.)
d) "or cach Ly under c) a set of generators of H(P,i) = {g€PIgL; = L;}

and the corresponding generators of the Bravais group

p. = x7! H(P,i)X, associated with L.,. (These P, form a set of
X, i 4 i Xi

reprasentatives of the Z-classes of Bravais groups of degree 5.)
e) For =ach Li under c¢) the index of H(P,i) in P.

IV. "The irreducible Bravais groups of degree six.

The maximal finite absolutely irreducible subgroups of GL(6,£) were
determined in [P1P 77,80] Part II., They are the absolutely irredu-
cible Bravais groups of degree 6 and fall into 20 Z-classes. There-
fore only the irreducible, not absolutely irreducible Bravais groups
of dzgree 6 are discussed in this chapter . The following well known

lem : restricts the possible dimensions of the form spaces.

(VI.') lemma. Let G be an f.u. group and X the character of the

natural representatton of G. Let

k
biwi + iEI ci(8i+§£)

Ho~—Q

P
% = z a.x. + 2
t=1 T 1

i
be the decomposition of X into irreducible complex characters such

the Xp o b, and Si’§i are irreducible and patrwise different, the Xy
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are afforded by real representations (1<i<r), the ¢£ are real, but not
afforded by real representation (1<i<q), and the 8. are not real, i.e.
o, = Si, where §i i8 the complex conjugate of Si (1<t<k). Then the
dimenston of the space of forms S(G) is given by

(@’ +a.) + E (2b% - b.) + E g -

T -

Do

e~y

Proof: Let ( , ) denote the scalar product for class functions of G,
and 1 the 1-character of G. For each character a of G let a(Z) denote

the c¢lass function defined by a(Z)(g) = u(gz) for gy € G. Then the

action of G on the symmetric matrices (g - ( t§ ) i xtr = X) has
g Xg,

the character +(x? + x?)). Hence aim s(e) = G2 =¥y, 1) =
e q
=30 P00 Bt 670 = 0 = tox) = ] Al e § bl
i1 i1
X

2 X Ci . From the results by Frobenius and Schur (cf. [Isa 76]
i=1

(

pg. 49 ££.) it is well known that (xiz),n = 1 for 1<iz<r,

(2)
(wi(Z)'1)= -1 for 1<i<q, and (Biz),1) = (3,

i +1) =0 for 1<i<k. From
this the result follows immediately.

g.e.d.

Now let G be an irreducible, not absolutely irreducible f.u.group of
degree six and let X be the character of the natural representation
of G. Let 1

X = E a

X
j= +73

be the decomposition of X in irreducible complex characters. Then

the X, (1 <i <1) are algebraic conjugate and hence have the same
i o = e

degree, say m . Also the a; (1 £ i 1) are equal, say a; = a.

Then 1*a-+m= 6. This equation has the following solutions:



S

number i R jid iv v vi vii viii ix
1 1 1 1 1 2 2 3 3 6
a 1 2 3 6 1 3 1 2 1
m 6 3 2 1 3 1 2 1 1

In the case of solution (i) G 1is absolutely irreducible. Since a

is the Schurindex of X‘ it divides the degree m of x1 (et

[Isa 76 ] p.161). Therefore there does not exist a group in the cases
(ii) , (iii), (iv), (vi), or (viii). Only the cases (v),(vii), and (ix)

are to be considered. All three cases are discussed seperately.

Case (v):

(a) % is not real. In this case dim S(G) = 1 and G is isomorphic

to a subgroup G of GL(3,K), where K = Q( y) is a complex guadra -

tic extension of & . (This can be seen by reducing the natural repre—
sentation of G over K.) In [Bli 17] all finite irreducible subgroups
of GL(3,C) are described. They either contain an irreducible imprimi-
tive normal subgroup or they contain a normal subgroup isomorphic to

AS' to a central extension KG by C3 or to PSL(2,7). Note that the

minimal splitting field of the irreducible representation of A5 of

degree 3 is real quadratic, namely @ [V5]. Hence it need not to be
considered in this case. The matrix group isomorphic to iﬁ has a bi-
quadratic extension of (3 as minimal splitting field and therefore

need not be considered at all. Finally the group isomorphic to PSL(2,7)
contains an irreducible imprimitive subgroup isomorphic to an extension

of C7 by C3.

(IV.2) Lemma. There s no irreducible Bravais group B of degree 6,

such that the character X of the natural representation of B <is the

sum of two complex conjugate (C-) irreducible characters.

Proof: The statement of the lemma is equivalent to the following:
For each irreducible f.u. group G of degree six with the properties
(i) and (ii) B(G) is absolutely irreducible, where

(i) the character of the natural representation of G is the sum of

two complex conjugate (C-) irreducible characters.



= 112 =

(ii) G has no proper subgroup with property (i).

By the remarks preceeding (IV.2), G is isomorphic to an imprimitive
subgroup G of GL(3,0), which is irreducible but does not contain
any proper irreducible subgroups. All relevant groups are conjugate

5

o 0 © (o] 1
in  GL(3,0) to <o 82 0| , |1

4

0 ) , (order 7- 3),
o 0o 9 0

(o]

= O O

where 9 is a primitive seventh root of unity, or

>or

(o]
1
0
i o o ] r0 o 1
o 1 O 11 O O > where @ is a primitive sixth and
o 0 1 J O 1 0

i a primitive fourth root of unity. From this one concludes that there

3

to a subgroup of <

© O ¢
- O O
O 0O =

]
1
o]

- 0 O

there are six Q-classes of f.u. groups G of degree six satisfying

properties (i) and (ii) (orders 7-3, 33, 3%, 22+32, 42.3, 4:2%.3)

Electronic computation of the lattices left invariant by representants
of the six Q-classes show that the gquadratic forms fixed by an f.u,
group of degree six with (i) and (ii) above are Z -equivalent to the
quadratic forms fixed by the absolutely irreducible subgroups of
GL{6,Z) derived in [P1Pp,77,80] Part II, which proves the lemma. (The
Q -classes of these groups fall into 3,3,6,3,5, resp. 5 Z-classes.The
ring of integral matrices commuting with the groups are isomorphic as

Z-order to L[ﬂ ” Z[-‘l;—m] , resp. Z[V=T] , all of which

have class number cne; compare proof of (IV.3) for the exact method.)
g.e.d.

(b) X1 is real. In this case dim S(G) = 2 and it follows from the

discussion at the beginning of (a) that G is isomorphic to A or

5

C2 x AS.
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(IV.3) Lemma. There are three ZIZ-classes of irreducible Bravais
groups B of degree six such that the character X is the sum of two
algebraieally conjugate (C-)irreducible real characters. All these

groups fall into one G-class. The isomorphism type s Cy x Ag

(4g = alternating groups on § elements).

Procf: Since —In is contained in every Bravais group of degree n,

the isomorphism type is C2 * AS and from the character table of

C, X AS it is clear that only one WU-class exists. That all f.u.

2
groups in the U-class are Bravais groups follows from the remarks
preceding (IV.3) and from (IV.1). The centering algorithm (applied
to the group 81 of (IV.5)) yields the following lattice of submodules

ZGXT.

of 2-power index in The lattices L L L

37 ~J4r s
are easily seen to be isomorphic. L1, L2, L3 yield a
set of representatives, as can be verified by the

following:
(i) Because of the submodule lattice,L1, LZ' and L3

certainly give rise to three different Z-classes
of groups G1, Gyr Gy and any lattice contained
in L, with 2-power index is isomorphic to Lye Ly,
or L3.

(ii) The centralizer of qu G2, resp. G3 in

26’!6 is

isomorphic to Z[.Hz'—\/-g] » Z['I;:——\@J , resp. Z [V5].

(iii) For i = 1,2 the following holds: Each sublattice of Ly of index

prime to 2 is of the form Li' where is an ideal of the

Gxﬁ. Since z [l%!é] has class number 1,

one has aLi = aLi for a suitable a € ¢ , i.e. aLi = Li as

centralizer of G1 in 2

L(szAs)—lattiCQSo

(iv) Each sublattice L of Ly of 2'-index in L3 is contained in a

sublattice of L2 of index 2. Hence because of (iii) and
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Ly =L, = L one has L = Ly as Z(C2~A5)-lattices. (cf. also

[Jac 68] for a more general argument.

g.e.d.
Case (vii). By reducing the natural representation A of G over the
field K = Q(Xl)’ where %q is an C-irredudcible constituent of the

character x of A, one sees that G is isomorphic to a subgroup cf
GL(2,K) (< GL(2,C )). However, the finite complex linear groups of

degree two were already determined by F. Klein (cf. [B1li 17]). They
are either imprimitive or contain a subgroup isomorphic to the binary
tetrahedral, octahedral, or icosahedral group. The latter three
groups certainly cannot arise in the situation considered here, since
they cannot be embedded into the linear group of degree two over a
cubic extension of the rationals. For [K : Q@] = 3, since X4 has three

algebraic conjugates. Since K can be embedded in a cyclotomic field
(IGl < =), K is a Galois extension of G . Hence K is contained in
R , since [K :G ] is odd. Therefore G is isomorphic to a finite
C-irreducible real orthogonal group of degree two, i.e. G is a
dihedral group. By Lemma (IV.1} dim S(G) = 3.

(IV.4) Lemma. There are two EZ-classes of irreducible Bravais
groups B of degree six such that the character X of the natural re-
presentation s the sum of three (C-) <iIrreducible algebraically conju-

gate characters. The groups ave isomorphic to dihedral groups DPS

and DSG of orders 28 and 36.

Proof: It is clear from the preceding remarks that B is isomorphic

to a dihedral group Dyn with @ (n) = 6 where @ is the Euler % -~

-function. Hence n € {7,14,9,18). But for n =7 or n =9 B does

not contain —I6 (1n = unit matrix of degree n), and therefore cannot

be a Bravais group. Clearly there are subgroups of GL(6,Z) isomorphic

to DZB and D36‘ They have to be Bravais groups because every f.u.

group containing one of them properly is already absolutely irreducible
and has only a one dimensional space of quadratic forms by the above
discussion and Lemma (IV.1). It remains to show that there is only one
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L-class in each case. B “has a unique cyclic subgroup of index 2,
which is irreducible., By (IV.1) B is the Bravais group of this sub-
group. Hence it suffices to show that there is only one £ -class of
cyclic groups of order 14 resp. 18 of f.u. groups of degree 6. But
this is clear since the classnumber of the 14th resp. 18th cycloto-

mic field is one.
g.e.d.

Remark. The preceeding arguments can be extended to prove that in
every even dimension n there are irreducible Bravais groups, iso-
morphic to dihedral groups Dy with k even and ¢ (k)= n. The
number of Z -classes within a Z -class is one if the k-th cyclotomic
field has class number one. The dimension of the space of guadratic

forms fixed by the groups is % . (cf. [BNZ 72,78] Part II, Theorem

7.4 for the 4-dimensional case).

Case {ix)

In this case x i1s the sum of 6 linear characters which are algebrai-
cally conjugate. Hence G is cyclic. The proof of (IV.4) shows:

(i) G has order 7,14,9, or 18, (ii) there is just.one Z -class in
each case and (iii) the Bravais groups are dihedral groups of order

28 or 36. Hence there is no Bravais group in this ‘case.

The results of this chapter are summarized in the following theorem.

(IV.5) Theorem. Let B be a (Q-)irreducible but not (C-)irreducible
Bravats group of degree six. Then B is IL-equivalent to one of the
groups B for 1<i<5 listed below. BisB, and By are G-equivalent and
55 By and B, are dihedral groups of order 28

and 36, The groups and their form spaces are:

isomorphic to €y x A

BI :@1 = J"I6>
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It should be noted that none of the groups B1'EZ""'BS is a maximal

Namely in the terminolcgy of the micro-

finite subgroup of GL(6,Z).

fiche supplement of [PlP 77,80] Part V the following inclusions can

easily be verified:



b

o
n

< G(Z)(=C2NSG) and BTNZB

n

1 € GU18) (Feyxs.)

By £ G(3) (5C,~5¢) and B,~yBy € G(17) (3C,48,) ;
By = G(1) (SC,v8) and By~ By < G{15) (C,x5,) ;
B, < G{12) (;C?xST), B4~LB4 € G(13) (EcszT) ;
and B4~is4 S G(14) (5C,xPGL(2,7))

By © G(7) (3D,,85), Bo~,BecG(8) (FW(E,)xC,)

and BSNLB5 < G(9)(=W(EG)xC7), where W(Eﬁ) is the Weylgroup of the

root system EG'
One easily checks now that there are seven crystal classes of irre-
ducible f.u. groups, three of which do not contain absolutely irre-
ducible groups. This completes the list of numbers of crystal
families for the six-dimensional case in [Jar 79].
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