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1. Introduction

The term 'crystal system' occurs very early in the description of
crystal symmetry. It seems to have been introduced by Weiss in 1815
[15] and has been used since then to classify crystal lattices and/or
crystallographic groups in three-dimensional space according tc some
common properties., Unfortunately the term has been given different

meanings, of which at least three still persist.

There have been several attempts to give dimension-independent de-
finitions which coincide with some of these different usages for three-
dimensional space. Two of the present authors were involved in such
attempts in [10] and [1]. The concept of 'crystal system', proposed in
these publications, coincides with the usage in the International
Tables for X-ray crystallography [9] (henceforth abbreviated IT), for
dimensions 2 and 3 and is well-defined for dimension 4. However, a
careful analysis of [10] by Ch. Leedham-Green (private communication)
made us aware of the fact that the definition of 'crystal system' given
in [10 ]l and [ 1] breaks down for some higher dimensions. In part 6 of
this paper we describe a situation in seven-dimensional space that
shows that the definition given in [10] and [1] is not dimension-inde-

pendent.
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The main part of this paper is a modified proposal for (hopefully
correct) dimension-independent generalizations of all three kinds of
'crystal system' presently in use. By discussing some of their pro-
perties and interrelations we also hope to clarify the background to
the old discussion about what is the 'right' definition of this term.

Rather than basing classifications primarily on lattices, as e.g.
Schwarzenberger [12] does, we start from the notions of 'crystal
structure’ and 'space group'. We have to refer the reader for our way
of defining these concepts, as well as those of 'space-group type',
'Z-class' (or ‘'arithmetic crystal class'), 'U-class'(or 'geometric
crystal class'), 'Bravais Z-class', 'lattice', 'lattice basis', and
'Bravais type of lattices' to [1]. There also the term 'Bravais flock
has been introduced. This definition hinges on the fact that to each
Z-class a unique Bravais Z-class can be assigned, cf. [1], p.15.

A proof of this fact is not given there, but the reader was referred
to [3] and [12]. The first of these quoted papers contains a hint to
the proof only, while in [12] the proof is contained in the proof of
its Theorem 2.1. Though those statements in this theorem that were
used in the definition of Bravais flocks are correct, other statements
of that theorem are not, cf. [13]. We therefore start here with the
definition of Bravais flocks, and include a proof of the facts used
in the definition, as this concept will play an essential réle in the

sequel.

Notation

The notation follows closely the one of [1]. Italic letters n,..
denote numbers, capital italic letters X¥,.. denote matrices. Boldface
small letters e, f,.. denote vectors, boldface capital letters V, L,..
denote sets of vectors or of matrices, where addition of these is
essential, e.g. lattices and vectorspaces. Gothic letters %, ,..
denote groups of matrices (under matrix multiplication) while script
letters G, H,.. dencte equivalence classes of groups. Small greek
letters @, ¢ ,.. denote mappings, capital greek letters B, T ,.. groups
of affine mappings. £ ,@, R are the sets of integers, rational, and
real numbers respectively; <, < means subgroup and proper subgroup

respectively, while < stands for set-inclusion, N for the intersection.
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As explained in [1] there is a one-to-one correspondence between
the Z -classes of n-dimensional space groups, of n-dimensional space-
group types, and of finite groups of unimodular nxn matrices (abbre-
viated f.u. groups). As in [1] , we are going to work mainly with
the latter.

With a lattice L in the Euclidean vector space v, there is asso-
ciated the group B(L) of all isometric mappings of V; that map the
lattice L onto itself, Describing B{L) with respect to all different
lattice bases of L we obtain a full Z-class of f.u. groups which is
called the Bravais £-class of L

Not all Z -classes of f.u. groups are Bravais Z -classes, but to
a Z-class of f.u. groups, we can assign a unique Bravais L-class

by virtue of the following

Theorem 2.1: Let A be a Z-class of f.u. groups. Then there exists
a unique Bravais Z-class B such that each f.u. group in A is a
subgroup of some f.u. group in B , but is not a subgroup of any f.u.

group belonging to a Bravais Z-class of smaller order.

To prove this claim, which is crucial for the definition of Bravais
flocks, we introduce the spaces of real quadratic forms left inva-
riant by an f.u. group, much as in [2] . (For some discussion of
the geometric background of this prodecure, cf. [1] , pp. 21,25)
By 4¥{n, £ ) we denote the group of all unimodular nxn matrices.

Let 4 be a finite group of unimodular »nxn matrices. The set of
all symmetric real ”*7 matrices X (or, equivalently, n -dimensional

quadratic forms) satisfying

Y xg=xrforall cew

forms an R-vector space S§(%) containing some positive definite
matrix. Conversely, for any set § of real symmetric matrices, contai-
ning a positive definite matrix, the set of all unimodular unxn
matrices X such that

HtIXH=Xforall X eSs

formg an f.u. group #4(S). If S consists of a single matrix ¥ ,
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we write #(¥ ) instead. We shall abbreviate #(5(%)) to #(%).
Note that ¥ <%B(¥%), S(HA(¥)) = S(¥), and B(B(¥%)) = H(¥%).
We first prove, following in essence Schwarzenberger [12]:

Theorem 2.2: Let 4 be an f.u. group, and let S(¥%¥) and #(%) be
defined as above. Then there exists a positive definite form
1, € §(%), such that Z(%) = #(S(¥%)) is equal to yﬂ(xo). (such

a form X is called a generic form in §(¥)).

Proof: (i) As %%(n,Z) is a countable group it has only countably
many subgroups of finite order. So, in particular, there exist at
most countably many finite subgroups # of %%(n, &) such that
B(E) < a .

(ii) For any f.u. group ¥ with #(%) <% we have S(2(%))> S(%).
Moreover, S(# (%)) = S(%) implies #(¥%) = B( S (B(¥)) =

B(S(%)) =R(%) > % . Therefore for each f.u. group % for which
#(%) is a proper subgroup of % we conclude that S(4 ) is a proper
subspace of S(#(%)) = S (%). The set P of positive definite

forms in S$(%) is an open subset of S$(%). Let V be the union of
the subspaces § (%) belonging to the at most countably many subgroups

% of 9¥(n, Z) properly containing #(%). Then PNV is of measure
zero in P, and hence there exists an Xo e P 'Xo PNV . Now
2 ( Xo)-?- #(S(%)) = B(4), and as Xode S (#) for any ”ll; B(EG),
we have Z(X_) = #(%).
2 o
We are now ready to give the
Proof of Theorem 2.1
Let 4 be an f.u. group of A . We want tc show that the Z-class of

# (%) (in the notation of theorem 2.2) is the unique Bravais
7 -class satisfying the conditions imposed on B in theorem 2.1.
There exists a lattice L in V,, with lattices basis | P . b
such that the matrix of the scalar products of the I{ is a matrix
Xo with 4 ( Xo ) =#(%), cf. Theorem 2,2, Then %( ﬁ.’o ) is an f.u.
group from the Bravais Z-class of L . So the Z-class of #(¥) is

a Bravais Z-class B .

For #e€ %% (n, Z) we have §( M_l g M) =M tx S$(#%)mM, and therefore
FICE
some f.u. group in B , On the other hand, let ¥4 (without loss of

¥ M) = M_TJ& (9) M, so each f.u. group in A is a subgroup of
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generality) be a subgroup of the f.u. group ¥ from a Bravais

1 -class. Let L' be a lattice such that ¥ represents B( L') with
respect to a lattice basis f.l,..., f, of L', and let X1 be the
matrix of the scalar products of the fi‘ Then € = #( X1) and as
X1E s (%) we have

€ = ﬁ(}(1) > B(S(%)) = #(9).
In particular % is contained in no group from a Bravais Z -class of
smaller order than that of Z(¥%).

We can now state the following definition (taken from [1] ):

Definition 2.3: The set of all Z-classes to which a particular
Bravais Z-class B is assigned by the properties stated in
theorem 2,1 is called the Bravais flock of B .

Theorem 2.1 guarantees that each Z -class belongs to one and only

one Bravais flock. So both Bravais flocks and Q -classes form
subdivisions of the set of all Z -classes. The various definitions
of crystal systems may be viewed as attempts to form coarser subdivi-
sions of the set of all Z-classes which respect the subdivision

in Bravais flocks, Q -classes, or both.

3. Crystal families

In one of the more often used conventions one distinguishes four
'crystal systems' (oblique, rectangular, square, and hexagonal) in
the plane, and six (triclinic, monoclinic, orthorhombic, tetragonal,
hexagonal, and cubic) in three-dimensional space, see, e.g. Buerger
[4] . In [10] the name 'crystal family' has been introduced for the
following dimension-independent classification that agrees with the
one referred to above for dimensions 2 and 3:

Definition 3.1: A crystal family is the smallest set of space-group
types containing, for any of its members, all space-group types of the
Bravais flock, and all space-group types of the Q@-class, to which
this member belongs.

Example: Space-group types R 3 and P6 belong to the same crystal
family, because £ 3 belongs to the same Q@ -class as P3 and P3
belongs to the same Bravais flock as P 6.
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The classification of space-group types (and hence space groups)
into crystal families alsc classifies Z -classes, moreover it is the
only one among the three discussed here that classifies both Q-classes
and Bravais flocks. Because of the first it may be thought of as a
classification of crystals by their external shape, because of the se-
cond it is also a classification of lattices and Bravais types of lat-
tices.

As in [1],p.16 the @-class to which a Bravais Z-class of a lattice

L belongs is called the holohedry of the lattice L. In two dimensions
all Bravais Z-classes (and hence all lattices) in a crystal family
belong to the same holohedry. In three-dimensional space, however, the
rhombohedral lattices with holohedry 3m and the hexagonal lattices with
holohedry 6/mmm both belong to the same family. In four-dimensional
space in eight of the twenty-three crystal families there exist two
different holohedries each. In one family three different holohedries
exist, and it is to be expected that in higher dimensions the situation
is even more complicated. Among other reasons, it is the occurence of
these cases that may be felt as a deficiency of the notion of crystal
family and thus leads to the following classifications.

4. Bravais-flock systems (Bravais systems)

A second kind of 'crystal system', which for three-dimensional
space has been used mainly by French crystallographers since Bravais,
e.g. Friedel [5], will be called 'Bravais-flock system' or, for short,
'Bravais system' here. We shall first give a dimension-independent de-

finition starting from a geometric aspect.

Definition 4.1: A Bravais-flock system (or, for short, Bravais system)
consists of full Bravais flocks of space groups (or, equivalently,
space-group types, or f.u. groups, or Z-classes). Two Bravais flocks
belong to the same Bravais system if the Bravais &-classes of these
two Bravais flocks belong to the same geometric crystal class.

Bravais types of lattices and Bravais flocks of space groups are
in one-to-one correspondence via their Bravais 7 -classes (cf. [1],
p.15). Therefore lattices and Bravais types of lattices are classified
into Bravais systems, too. A crystal family always contains full Bra-

vais systems. In dimension two, Bravais systems and crystal families
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coincide. The same holds for the five non-hexagonal crystal families of
three-dimensional space. The hexagonal family, however, splits into

two Bravais systems, which are called the rhombcochedral Bravais system
(consisting of space-group types with Hermann-Mauguin symbols B ...)
and the hexagonal Bravais system (consisting of space-group types with
Hermann-Mauguin symbols P ...).

Each space-group type of the hexagonal Bravais system belongs to
one of the twelve g-classes from 3 to 6/mmm , Each space-group type
of the rhombohedral Bravais system belongs to one of the five Q-
classes 3,3, 32, 3m, and 3m only. However, the Bravais systems do
not provide a classification of the @ -classes. The Q-class 3, e.g.,
contains space-group type &3 which belongs to the rhombohedral Bra-
vais system, and space~group type P3 belonging to the hexagonal Bra-

vais system.

Definition 4.7 utilizes the distinguished réle of the Bravais
Z-class in a Bravais flock. We shall now give another characterisation
of the Bravais systems that completely avoids reference to this
distinguished r6le. For the formulation of this and further concepts
it will be convenient to use the term 'intersection' in its set-theo-
retical sense, i.e. we shall say that a Q -class and a Bravais flock
intersect if there is at least one space group common to both. If a
G-class and a Bravais flock intersect they have, of course, a whole
I-class of space groups - or, in the equivalent formulation using

f.u. groups, a whole Z-class of f.u. groups - in common.

Theorem 4,2: Let F and F' be Bravais flocks. If the Bravais

7 -classes of F and F' belong to the same @-class then F and F'
intersect the same set of Q@ -classes., Conversely, if F and F' in-
tersect the same set of Q@ -classes then the Bravais Z -classes of F

and F' belong to the same @Q-class.

Procf: It is convenient to work with f.u. groups again., To prove the
first assertion, let ¢ be an f.u. group from some Z-class in F .
Then by the definition of a Bravais flock there exists an f.u. group
# from the Bravais Z-class B of F , such that 4 <A . Let X

be a rational nonsingular matrix such that X_1 # ¥ is contained in
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the Bravais Z-class B' of F'. Then % % x < ¥ '# % and so P
also intersects the Q-class to which ¥ belongs.

To prove the converse, let @# and #' be f,u., groups from the

Bravais Z-classes B and B' of F and F' respectively. As F
and F' are assumed to intersect the same set of @-classes, there
exist rational non-singular matrices X and Y such that

V@ x = #' and =1 #' Y =49 . Therefore the orders of # and

#' must be equal and we have in fact X | @ X =#B' as claimed.

a
As an immediate consequence of Theorem 4.2 we have that Definition 4.1

is equivalent to the following

Definition 4.3: A Bravais system consists of full Bravais flocks.

Two Bravais flocks belong to the same Bravais system if both Bravais
flocks intersect the same set of Q-classes.

5. Crystal-class systems (Crystal systems)

In the last section, we have stressed the point that Bravais
systems consist of whole Bravais flocks but not in all cases of whole
Q@ -classes. For the 'crystal systems', as used, e.g., in IT, the
opposite is true: they consist of whole @-classes but not in all
cases of whole Bravais flocks. More precisely: While the 'crystal
systems' of IT coincide with the crystal families (and with the
Bravais systems) for dimension 2 and for the five non-hexagonal
families of three-dimensional space, the hexagonal family is sub-
divided into the trigonal crystal system consisting of the five
@ -classes 3, 3, 32, 3m, and 3Imand the hexagonal crystal system con-
sisting of the U-classes 6, 6, 6/m, 622, 6mm, 62m, and 6/mmm. Whereas
a Bravais flock always determines uniquely its Bravais £-class
(playing the rdle of a 'leading sheep' in the Bravais flock), there
is in general no distinguished Z-class within a Q-class. This
caused the difficulty (and the mistake in [10] and [1] , see section 6)
in finding a dimension-independent definition that generalizes this
kind of subdivision.
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However, Definition 4.3 lends itself to the formulaticn of a counter-
part which will then join together whole @ -classes, but not necessa-

rily Bravais flocks,

Definition 5.1: A crystal-class system (or, for short, crystal system)
consists of full Q-classes. Two Q-classes belong to the same

crystal system if they intersect the same set of Bravais flocks.

This definition may be considered as a reformulation of the statement
of I.T., p., 46, first section: "The grouping of the point groups

according to the kind of lattice with which they can combine to form
space groups is analogous to the grouping of three-dimensional point

groups into 'systems

It is clear from the definition that a crystal family contains full
crystal systems, It can be easily checked that for dimensions 2

and 3 the crystal systems defined by 5.1 coincide with the ones used
in IT as described above. Definition 5.1 also yields the 33 four-
dimensional crystal systems distinguished in [16] and [1] . Moreover,
crystal systems, as defined by 5.1, have some useful properties that
call for the adoption of this general definition.

As a first of these we show:

Theorem 5.2: A crystal system contains at most one holohedry.

Proof: By the definition of a holohedry, repeated above from [17 %

p. 16, one has to show that any two Bravais z-classes G and f
contained in the same crystal system actually belong to the same

g -class. By definition 5.1 the @Q-classes of G and H must inter-
sect the same set of Bravais flocks, sc in particular the Q -class

of 6 must intersect the Bravais flock of H and the @ -class of f
must intersect the Bravais flock of 6 . So for any twoc f.u. groups %
and # from G and H , respectively, rational invertible matrices

¥, and %

1 2 exist such that

x=1 @ x : ¥
1 g £ A and X, X X, < 94,
il

4 ¥, = H# , i,e. G and H

Then % and # have equal order and X; 4

belong to the same @ -class.
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Note that Theorem 5.2 does not claim that a crystal system does
contain a holohedry (and hence a Bravais #-class) at all. In fact,
while in dimensions 2, 3, and 4 this is the case, it is no longer
true in some higher dimensions. In section 6 we shall describe some
seven-dimensional groups which among other things will demonstrate

the existence of a seven-dimensional crystal system without holohedry

For dimensions in which all crystal systems contain a holchedry,
it follows from Theorem 5.2 that the number of crystal systems is
equal to the number of Bravais systems and that both can be characte-
rized by their holohedries, while for higher dimensions there will in
general be more crystal systems than Bravais systems.

Although, as pointed out, crystal systems need not contain holohe-
dries they do have some nice 'coherence' properties. To derive them
we first prove:

Lemma 5.3: Let % and # be f.u. groups with ¥ <#. ¢ and # be-
long to the same crystal family if and only if they belong to the same
Bravais flock.

Proof: If % and J# belong to the same Bravais flock they clearly
belong to the same crystal family.

To show the converse we first note that the dimension of the R -vector
space §(%) (defined in section 2) is the same for all f.u. groups

% in a family.

This is seen as follows:

If 4 and ¥ are f.u. groups from the same Bravais flock, then

$(%9) = S{H). If on the other hand ¥ and ¥ are f.u. groups from
the same Q-class and X is a non-singular rational matrix with

x V9 x =, then ™ s(9)x = (8.

Therefore the dimension of the R-vector space §(%) is a family-
invariant.

Now let % and # be f.u. groups from the same crystal family
and let ¥ <.#. Then S(#)< §(%) and dim S§(%) = dim s (%) and
thus S(%) = S (). Therefore ¥ and # belong to the same Bravais
flock.



- 87 -
We further need:

Lemma 5.4: Let ¥ and # be f.u. groups of the same Bravais flock
such that % <. # . Let G and H be the Q-classes of % and ¥,
respectively. Then any Bravais flock that intersects H will also in-
tersect G,

Proof: Let #' be any f.u. group in H and let X be a rational non-
1

singular matrix with ¥ ' # X =x#".
Then ¥ ' 4 x < x™1 # X =#'. Further as $(%) = §(H#) , we
have

st s =k s(9) x = ¥ s(#) x =85k #x), and thus

1 'e x belongs to the same Bravais flock as Y ox,

o

From these two lemmas, which may also have some independent inter-

est, we now obtain the desired coherence property of crystal systems:

Theorem 5.5: Let 4, #, and ¥ be f.u. groups with % < # < .
If % and .¥ belong to the same crystal system S then J# also be-
longs to the crystal system S.

Proof: As % and X belong to the same crystal system they certainly
belong to the same crystal family and thus by Lemma 5.3 to the same

Bravais flock. As a direct consequence of the definition of a Bravais
flock, 4 , # , and ¥ therefore belong to the same Bravais flecck. For
an f.u. group & let F (&) be the set of Bravais flocks intersect-
ing the W-class of /. Then by Lemma 5.4 we have

F(X¥) < F(#)c F(¥%). However, as ¢ and .X¥ belong to the
same crystal system 8 , we have F (X)) = F (%) and hence equality
holds throughout, i.e. # also belongs to S.

6. An example and its consequences

In this section we shall describe some Z-classes of finite groups

of 7x7 unimodular matrices, which show that in seven-dimensional space
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the following situation exists, see Fig.1:

There is a Q-class A of order 23 9 consisting of nine Z -classes

A‘I"" A g° These Z classes belong to seven Bravais flocks whose Bra-
vais Z-classes are 01, 02, DB' 53, E4, F1' and F2' These belong
to three different Q-classes 7, E, and F of orders 211-32-5 ©7,
28'32' 5¢7, and 210-34 *5 « 7, respectively. D consists of 01, [ ot and
03, F consists of F1 and F2, while E contains not only 53 and
54, but also two Z-classes E1 and 52 which are not Bravais Z-
classes.

F 20.34.5.7
¥ M.32.5.7
g 28.32.5.7
% 26.3.7

8 l?llﬁz BEIB“]BS]BGIB"IBB B, 23.3.7

A A A s [ A [Ae] a0 4s] 4 23.7

Fig.1 Some arithmetic classes of f.u, groups in

seven-dimensicnal space
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The crystal system to which A belongs contains no holohedry. It
consists of eight Q-classes, of which three (A, B, and ¢ ) are
shown in Fig. 1.

The @ -class A (or likewise B or C ) provides an example that in
[10] and [1] crystal systems were not well-defined independently of
the dimension. In [10] the concept of crystal system was defined in
the following way:

"2.9 Definition: Each holohedral crystal class (= holohedry) H deter-
mines a crystal system. We say that a (geometric) crystal class

(= @ -class) ¢ belongs to the crystal system of # if each group

of ¢ is a subgroup of some group of H , but not a subgroup of a
group of another holohedral geometric class (= holohedry) of smaller
order."

The wrongly alledged property of @ -classes is brought out even more
clearly by the formulaticn on p. 16 of [1] :

"Not all @-classes of f.u. groups are holohedries. However, for any
0 -class C there is a unique holohedry H such that each f.u. group
in € is a subgroup of some f.u. group in H but is not a subgroup of
any f.u. group belconging to a holohedry of smaller order. Using
this..."

This statement has been checked in dimensions 2, 3, and 4, but the
example of the @ -class A , menticned above, shows, that it is not
true for arbitrary dimensions. Therefore the definition of 'crystal
system' in [10] and [1] breaks down in some higher dimensions,
although it yields the same classification of @ -classes as the new

one, proposed in section 5, for dimensions 2, 3, and 4.

We shall now describe explicitly the seven-dimensional f.u. groups to
whose existence we referred above. For the definition of the group-

theoretic terms used in this section see, e.g., Huppert [81]1 .

Plesken and Pohst [11] derived the maximal finite irreducible
subgroups of 4.%(7,Z ). All of them turned out to be among the
groups C. Hermann [6] had listed as the 'fully transitive' groups.
They can be described as follows:
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(1) Let LEREEEY e., be an orthogonal basis of the seven-dimensicnal
Euclidean vector space Vg, Then the Bravais Z-classes of the

lattices

1]

M~
2
o

o

2
mn
N

Ly

7 7
L, = | £ a;e; a.,eZ, £ a, =0(mod 2)}, and

i A Z z
=1 =1
.
L3 = "L’E‘rai e. a, e Z ra, = a. (mod 2) for i=2,...,7 ]
7 17 .2
form a complete Q-class of order 2 -7! = 2 .3".5.7, In particu-

lar B(I.1) is represented by the full monomial group of degree 7

with respect to the basis € reees g and so is isomorphic to the

wreath product of a cyclic group of order 2 by the symmetric group

of degree 7. The Bravais £ -classes of L and L are

IR 3
called 01, 02, and 03, respectively, in Fig.1 and its description
above.,

(2) Let f1,..., iB be vectors in V.] such that their scalar products
satisfy

7T if € =4 = V40047
< fi, fJ- > =[_

1 if 2 # F,4,0 = 14.004,7

Then f1 o ‘8 = o and because of this property we can define four

further lattices by:

1 8
L =§.gai§i | a. e},

=1 &
9 8 8
= ‘1'51&{ f; | a, e 1, 1;51&7: = 0 (mod 2) }
3 8 8
L = [{Eai > | a;, € & 5 iE1ai = 0 (mod 4) }
4 8 8
|_=|§a.f.|a_iel, Eaifo(modﬂ)l
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B(L1) permutes the vectors * L],...,t fa since these are all vectors
of norm 7 in I.1. Using this, one concludes that B I.1) is isomor-
phic to the direct product of a cyclic group of order 2 (correspon-
ding to the point inversion) and the symmetric group of degree 8.

B( L1) also acts on the lattices L2, L3, and L4, hence is a subgroup
of B(L2), B(La), and B(L4). In fact it can be seen that

B( I.T) = B( |.4) as the lattices |_‘I and |_4 are 'dual' in the sense
that there is a lattice basis b1,...,b7 of L4 such that

<f, ,/b,> = @ {5 BEY = Ay peay
&Y B iE @RF T = laemagl
where @ € R, ¢ % 0 (and in this case a = 8).
1 4

Therefocre, the Bravais £ -classes of L and L belong to the

same @ -class.

However, as Hermann [ 6] remarked already, L2 and L3 have

higher symmetry, namely B (L3) turns out to be the Weyl group of the
root system E g, which is a reflection group of order 210'34'5-7,
c¢f., e.g. [7] . since also |_2 and |_3 are dual in the above sense,
the Bravais Z-classes of I.2 and L3 again belong to the same

@ -class.

In Fig. 1 and the accompanying description the Bravais & -classes

of L‘| ana LY are denoted by E, and B4, respectively and the

Bravais Z -classes of I.2 and L3 by F1 and F2'

Plesken and Pohst [11] have proved that L,, L., L 30 |-1, L 2,
L3, I.4 constitute a set of representatives of the Bravais types of
lattices with irreducible Bravais Z-class in 7-dimensional space,

As the groups of the seven Bravais £ -classes belonging to the
lattices L1,. iy L4 are complex irreducible, the corresponding

form spaces are one-dimensional. Each of them can, therefore, be
characterized by the matrix of the scalar products of a particular
lattice basis, For completeness we include for each of the lattices
a lattice basis such that the matrix of the scalar products is parti-

cularly simple.
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We shall now exhibit in a way slightly different from [11] the
existence of the Q-class A of Fig.1, that plays such a crucial part

in the discussion above. B and ( can be obtained by similar arguments.

Let G be a permutation group of degree 8, generated by

a = (1234567) (8) and g= (18)(24)(37)(56). G has order 56 and can
be viewed as the affine group on the line over the Galois field of
eight elements, cf. Sims [14], 1In particular G has a normal subgroup
N of order 8 generated by the elements conjugate to g . N is a
direct product of three cyclic subgroups of order 2.

(1) Since G acts as a permutation group of degree 8, we can embed

it into S and let it act on the lattice L where it permutes the

8
vectors f1""'8' Hence G vyields a subgroup T of B(L‘), and T

acts also on Lz, 13, and Lq, as B(L1) does.
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(2} Since the index of N in G is 7, we can induce any represen-
tation §: N-+{+ 1} of N to G and get a monomial representation

b: G> 9¥(7,2). If we choose & different from the trivial represen-—
tation, o 1is faithful, and hence we get a group TI' = G acting on

the lattice L,. Since B(L1) acts also on I.2 and L3,1’" also

does.

(3) As G has only eight irreducible characters, one of degree 7,
and seven of degree 1, any faithful representation of G of degree 7
must be irreducible, therefore I'and I' act irreducibly. Moreover

these actions are rationally equivalent, i.e. all f.u. groups ob-

tained from I and T', respectively, by choosing lattice bases for

L1,....L3,L1,...,L4 belong to the same @ -class.

(4) Let ¥ be the f.u. group obtained from T by choosing a lattice
basis for L,. Then all f.u. groups in the @-class G of ¥ will be

irreducible and therefore also the groups #(#) for all #e G .

As, in seven-dimensional space, the Bravais Z-classes of the lattices
LirLgr Ly LW, |_2, L3, and l4 are the only Bravais Z-classes
consisting of irreducible groups, we see that all the groups @ (#)
as above must belong to these 7 Bravais 7 -classes. This suffices to
show that the @-class A lies in a crystal system without holcohedry.
The further details, shown in Fig.1, have been obtained by computer
calculations using the methods of Plesken and Pohst [11].

1. conclusion

The relations between the concepts Z -class; Q-class and Bravais
flock; crystal system and Bravais system; and finally crystal family
may be summarized in Fig.2, where downward connection means that the
classification below is a subdivision of that above. By comparison
with Fig.1 of [10] the greater symmetry of the new one reflects the
fact that the definitions proposed in sections 2, 3, 4, and 5 of this
paper give more balance to the viewpoints of classification by lattice

symmetry and by symmetry of macroscopic shape.
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