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Foreword

This paper is one of a series which is primarily concerned with the structure
of those space groups in n-dimensional Euclidean space for which the point groups are
generated by reflections, i.e., are crystallographic Coxeter groups. The determina-
tion of all possible space groups dates back to the last century for n £ 3 and has
been extended to n = 4 by Brown, Neubliser and Zassenhaus with the aid of a computer
and some previous work by Dade, However, since eventually every finite group will
occur as the point group of some space group, one cannot expect a reasonable solu-
tion to the problem for a gemeral n. On the other hand, by restricting oneself to
an accessible class of point groups, such as we have chosen, one can hope to obtain
a satisfactory answer., The interest in Coxeter groups is also heightened by the fact

that, together with their subgroups, such groups are sufficient for n g 3.

If we start with the lattice A as being embedded in some vectorspace V and the
pointgroup K < GL(V) as the two building blocks of a spacegroup S, then the
various possible space groups which can be build from A and K consist of elements
of the form (tg,g) with t, €V and g € K, The point group element g € K
determines t up to an additive summand from A, Moreover, since necessarily
(tg,g)-(th.h) = (tg+gth,gli) = (tgh+t,gh) with t € A, the map K — V : g — tg
is not completely arbitrary, but restricted by various compatibility conditions.
Mathematically, these can be described by saying that the glue between A and K,
which glues A and K together to a space group S, is an element in the first
cohomology group HI(K,VH\). Thus to classify spacegroups it is helpful to get as
many informations about this cohomology group as possible. Unfortunately, this leads
far away from classical crystallography and deeply into the field of abstract algebra
und thus might not be digestable by every reader. Still, at least for mathematically
inclined people, the papers [4] and [5] constitute a good introduction into what

is being done in this paper and should be consulted beforehand. It is hoped that

at least for these who are interested in the structure of higher dimensional
crystallographic space groups this paper presents a large variety of important and
richly structured examples and a good testing ground for whatever conjectures cne

may have in mind.
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O.Introduction.

Let V be the vector space of translations of a finite dimensio-
nal real affine space and K a crystallographic linear Coxeter group
in v for which Hl(K,V) = 0, If 4 is a lattice in V invariant under
K, the determination of space groups with point group K and lattice
/\ requires the calculation of the cohomology group H1(K,V/A).

In this paper, we establish some general results regarding this
problem, which clarify earlier arguments in (4] and [2], extending
them beyond the finite case, as well as those in [5] and [6]. We also
consider the group H1(K+,V//\), where K* is the rotation subgroup of X,

For a discussicn of linear Coxeter groups, we refer the reader
to [5). The notation established there will be used without further
explanation in this paper, with one exception: for the sake of consis-
tency with [2] and [4), we denocte <(«., ;15 by Nyyo rather than njye

Recall [4) that A denotes thejgroup of all v € V such that
v-gv € A for all g € K. The odd Coxeter graph "% of K is obtained
from the ordinary gqraph [7 by retaining only the edges marked by 3
(and thus deleting those marked by 4,6 or e ), If E is the number of
connected components in Fo, we have

k/[k,kl T (Zrzf ., (1)
If m is a graph automorphism of M and D is a diagonal matrix
diag(d,eee,d ), with all d; > 0, satisfying D"'ND = N, where TN
is the matrix ("rri, ﬂj)’ the mapping

oy ._7d1 L (2)

belongs to the normaliser of K in GL(VK). Conversely, when K is finite,
every coset of K in this normaliser is represented by such a mapping
and, furthermore, there exists a suitable matrix D for every graph
automorphism 1 [4].

1. The group Hi(K,\I//\).
Suppose /\ 1is a lattice in V invariant under K. Then there

exists [5] a 'basic system' B = {bi ﬁi} of K in V. such that



=B =

aB) € A, c p(B) and /\; = P(B), making A’ = v @ p(B). Basic
systems B and B' are considered equivalent if they are related by
a mapping of the form (2); it is sufficient to consider only one
basic system from each equivalence class, of which there is only

a finite number [5]. For convenience, we rename the elements of B
to be % ,eee, K ; the matrix N is then integral. The index of Q(B)
in P(B) is |det N|. An important role is played by the subgroup

* —-—
A+ 2 N If A denotes the projection of A on V, (recall from

K
[4) that /\K cp(B)), we have
/\+2/\=V@(/\ + 2pP(B)) . (3)
Elements oﬂi, O*J. € B are called eguivalent if m]._j = 2 and

(ot = ﬂj)/z € P(B), so that Nk T Mk mod 2 Z for all k (notation:
&y~ ck]). IE (°‘ - )/2 € A, we say that they are equivalent
md A (o, ~p uf. Y. Also call o; € B null if ®./2 €P(B), i.e.
Ny = 0 mod 22 for all k. The lattlce P(B) is spanned by P(B) and
the elements 01/2 for null O(i (where ldi is the fundamental weight
corresponding to Oﬂi). Therefore, if ¥ is the number of null elements
in B, we have
) eey T oz . (4)
The exact sequence 0 --7/\‘/1\-—» v/N—>V/ f\.-—-s 0 induces the
exact cohomology sequence
0= A" A Homtk, AT/ AY—> Kk, viA ) —s HLK, Vs AT
Since /\.‘ = VK@ P(B)., the above sequence 1s the same as
0 —>P(B) ‘re(e) 5 Hom(K KaeemHrza) S H? (Ky V//\)is:» H (K Vi /p(B)).
The calculation of H (K V/A) is based on this sequence, The map [}
assigns to an element of the form w/z + P(B) the homomorphism
5, = (S Of /2 + A\ , where Sij is the Kronecker delta, which is a
coboundary. If M is the dimension over Z/2 Z of the subgroup of
elements annihilated by 2 in (VK@ p(B))/ N , it follows from (1) that
Hom (K, (VS @ (B /A) T (Zr2z P, (s)
The image of ¥ is called the subgroup of weightlike classes in
H1(K,V//\) and is easily calculated. We conclude from (4) and (5) that
m¥) T ozt . (6)
Note also (4] that Im( ¥ ) is stable under the action of the normaliser
MK, A) on Hj(K,V/A), since an element of this normaliser must also
preserve /\.. In many cases ¥ is surjective, but to complete the
determination of Hi(K,v//\) we need to calculate the image of @& .,
If an element g € K is of order n € o0, let N{(g):V —»V be the

n-1
map 1+g+e..+q &
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Lemma 1. Suppose i # j and mi‘< oa , Then for all v €V,
N(sisj)(v) =myvo- mij/(4—nijnji)((2<v’ & )—nj v, o‘ij)) «,
+(2&, u\)—n <v, ;ci)) d-j).
Proof. First note that
sisj(v) =v - {v, ;J> “j - (<, ﬂ)-n 1<, u»)"’- . (7)
Therefore N(sis J(v) = me v o= X, where x = Xy “i + x3 ot]. for some
Xga%5 € R. since N(s, s])(v) is invariant under s;s it is clear
from (7) that both ot and M must vanish on it, i.e. that
<v otl) 2x; + nyixyo mij<v, &j> = ngaxg o+ 2%
Solvinq these equations, we obtain the stated formula.
Suppose t is a function {_51,...,5 ﬂ —> V and let Py =
<t(s Xy &, ) then t will induce a cocycle t:K—>V/A if and only if
(1+sl)t(s )E A for all i and
N{s, sj)(t(s Y+sg t(s )) € A (8)
for all i # j such that my < 80 , The cocycle t will be a coboundary
if and only if there exlst c € R such that t(s;,) = ¢; &, mod A for
all i, By subtracting from an arbitrary function t the coboundary
inducing function si—‘» Piy ui/z, we are able to assume from now on that
P;; € Z for all i. (9)
With this assumption and the aid of Lemma 1, one sees that egns. (8)
amount to the following conditions on t:
(A) 2t(s;)e A for all i;
(A)ifmlj=2,p °(j+p &i(-_l\;
(A)lfmj=3, t(s)+t(s)=pijui+pj &, mod N\,
It follows from (A ) that H (K v/ A) is annihilated by 2 and that
2pij€ Z for all 3,3, since /\ CP(B)e As o, /? € A for any i (5],
(A ) can be restated as
(A') ifmi =2, Py o= Pyyg modlandp ¢Z onlylf“"’/\"‘:l.
From (A ) follows by addition that if {.11....,1 'S is a circuit in r"o,
then

(%) (pi‘11 +P. O, #p; 5 +p; ;) K 4esaslpy o +p; il)u'-'k eAK.

)
141, 4 agra Yoty %3 B T
Since a coboundary K—?VK/P(B) corresponding to an element v+P(B)
lifts to the coboundary K- V/A corresponding to v+ A, a cohomology
class {E} € H1(K,VK/P(B)) is in the image of ¢ if and only if there
exists a cocycle T:k =>V/A for which
T(s;) = t(si) mod VK@ P(B) . (10)
Then
V4 v
{Tis;), o(j> » Celed, otJ.) mod Z for all i,j. (11
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Theorem 1., A class {_i:s £H1(K,VK/P(B)) belongs to the image of @ if
and only if the following conditions are satisfied:
(B,) 2t(s;) € K + 2P(B) for all i;
(B,) if miy = 2, then Pis = Pjj mod Z and p; ¢Z only if o ~ . Dtj;
(By) (*) holds for every kit Lll,..., k.(l ln ne.
P_r_oif_. Suppose that there exists a cocycle T:K =>V/A satisfying (10).
Then 2T(s ) = Zt(s ) mod 2 /\ so that 2t(5 ) €N+ 2 n* by (Al)'
Since 2t(s ) € VK, we in fact have 2t(s ) €. /\ + 2P(B) by (3). Condi-
tions (B ) and (B ) follow from Condltlcns (Az') and (A;) for T in
view of ('ll).
Conversely, suppose t is a cocycle K—WV /P(B) satisfying (B )= (B D.m

Let a; € /\ be such that ZtCs ) - Zalé Ay when Mg = B deflne
bij = (t(s )—a )+ (t(s )= a ) - pij“i - p]l«..
Then bij €N Oby (A ), bij = hJ and Zblj o IF {'l’l""’lkS is a
circuit in [, (*) 1mplies that
b + eee + b, e N, (12)
iyip Lpiq .
It follows that there exist < € A such that 2::i € N\ and
bij +ey 4 ey € A for all i,je (13)
Indeed, if E is a spanning tree of a connected component of N° and
¢ is a particular vertex in Z, define c =0 and c; = b, . + eae
g 1 1112
s, 4 if i € Zand {11,...,15} is the path from i, =¢ to i_ =i

inis:llg j € Z is such that mij = 3 and le,...,jtz is the path from
J1=<r to j, = J in I, then {i ,eee,i yiiseeeyiy) is a circuit
in P°, so that
biliz + ees F bis_'lis + bij + bjtjt_j R | bj2j1 e N
by (12), i.e. ¢y + by, + c, e A, proving (13).
Now define T(s;) = t(s;) - a; + c,. Then (10) is fulfilled,
2T(si)€ N, (Az') follows from (BZ)’ whereas if mij = 3,
T(si) + T(sj) = (t(si)-a,) + (t(s].)-aj) + 0y o+ Cy
=piju(.+p j+bij+ci+c‘
= <ris;), oLJ‘[D'- + <T(sj),&i>uj mod A\
by (11) and (13), proving (A Yo

It remains to calculate the group H (K, Vi /P(B)). In fact, (B,)

2
shows that it is sufficient to consider cocycles satisfying

.= p. Z ; =

pi] in mod b 15 mij 2%

which we shall call symmetric. As all coboundaries are symmetric, the
classes of such cocycles define a subgroup H (K Vg /P(B)), to which

we shall restrict our attention. Condition (A ) can again be replaced
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by (A2') for symmetric cocycles (but not in general since ui/Z €P(B)
for nell &i).

Given a symmetric cocycle t:K —>VK/P(B), let X be the mxm matrix
(xij), where %53 is the class of 2Pij in Z/2Z (and thus equal to
0 or 1). Since an element v &€ Vi belongs to P(B) if and only if
<V o{k7€2 for all k, condition (9) and (A'l)-(AB) translate into
the following properties of X:

(Cl) Xi3 = 0 for all ij;
(c,) if mys = P ¥ = Hgpo with X35 # 0 only if di ~ dj;
(cy) if Mg = 3, Kicg = Fgp B Roafigy & X54M5x mod 2 Z for all k.

The last condition can be viewed as expressing the j-th row of X
in terms of the i-th row and the single unknown Xsie Conversely, if

X is such a matrix, the functiocn tx: {sl,...,sm§ -V, glven by

ty(sy) = (Z x; @072
defines a cocycle tX: K—> VK/P(B).

iIf t is a coboundary, t(si) = ¢y di mod P(B) for some = € R,
with (9) forcing ZCiGZ. The matrix X then equals (2dinij)’ taken

K

mod 2 Z; in other words, the rows of X are multiples by 0 or 1 of
the rows of N, the matrix N taken mod 2 .

Suppose that the general form of X contains X unknowns. Since
N has m - ¥ nonzero rows, one can eliminate m - M of these unknowns
to obtain a vector space (over #Z/2 L) of matrices X which correspond
in a 1:1 fashion to the elements of H;ym(K,VK/P(B)). In particular,
it follows that

Hoym(K Ve /P(BY) = (Z/22) Rl b @

One can then use Theorem 1 to see which of these matrices X correspond

to classes {?k} in the image of @ for a particular A.

2. Some special cases.

Suppose first that K is finitej; then the subsets of B correspondin
to the connected components of i beleng to the well-known 'types!
A-G [1]. It is convenient to consider types A1 and 82 to be C_l and C2
in this context. Null elements “i of B are then precisely the last
elements in components of type Cn for some n 2 1. We call such an “i
odd or even according to whether n is odd or even. If n > 2, we denote
by Sgoq the unique element in B joined to ui (in M ). One can see
from the tables in [1] that in a component of type C,» the weights
@, and @ . are equal, mod 2P(B), to o /2 and 0 if n is odd, and to
0 and mnlz if n is even,
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Solving equations (Cl)—(c3), one sees [2] that elements of

Hi m(K,VK/P(B)) correspond in a 1:1 fashion to matrices X whose

nonzero entries xij occur only when

(a) “i’ elj are distinct and null, when xij = xji;

{b) o(i, “j belong to a component B' of type A3,B3,B4 or D4, when
the only exceptions are Xqq = Xgq = Xp5q a:da’a;so, in the case
of Dyy Xq=Xqq=Xpq NG X34=X,3=Xp34X,, e '

(c) oti is the last element of a component of type Ch (n 22) and
o(j = “1-1' _

By Theorem 1, the class {tx‘ﬁ belongs to the image of @& for a
particular A if and only if the following conditions hold:

i ok i 3 - ol —~ ol -
(D1) if I ®. are distinct and_null, then xij O unless 5 A %3

(0,) if & is'null and /2 ¢ A, then
'Zo‘k odd Xik * xi,i-'le = 0 mod 2 Z,
where e = 1 if Oii is even and e = 0 if O‘i is odd;
(03) if %y e(j belong to a component B! of type A,, then Xij = 0

unless (& - o,)/2 € /\K and P(B') © /\K.

(Dd) if & s olj belong to a component B' of type B3,B4 or D,, then
X3y = 0 unless P(B') C/\K.

Suppose T,,...,T, are the equivalence classes mod A of null
elements in B. Let ‘t:r be the cardinality of Tr and call Tr even if
every ele_ment in T is even, Also say that T, is of Type I if
#,/2 ¢ /\K for some (and hence all) &, € T_and of Type I' otherwise.
et ¥ be the number of even Tr of Type I, AJ_l the number of compo-
nents in B of type C,1
A;:By and By which satisfy the restrictions in (D;) and (D,) plus

and ¥ the number of components in B of type

twice the number of components of type D4 that do so. A counting
argument then shows that

dim m($) = Z (T-D(T-2)/2+ 2. TA(T-1)/2
Z/2Z type I T r type 1% G !
+Uo- oy - X+ S

Together with (6), this provides a general formula for dim z/2Z H1(K,V/A).
Note also that a map of the form (2) can belong to the normaliser
N(K, A) only if all di = 1, and thus TN = N; therefore the group
N(K, A)/K is isomorphic to a subgroup of such graph automorphisms
Tof M .
Secondly, instead of assuming K to be finite, suppose merely that
s £ 3 for all i,j, so that M is an ordinary graph. Null elements of
B then correspond to isolated vertices in 1. A connected component
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of M is called special if it is a complete s-partite graph for s =2
or 3. Solution of equatlons (C )= (C ) then leads [5] to the conclusion
that elements of Hsym(K Vi /P(B)) are in 1:1 correspondence with
matrices X whose nonzero entr1es xlj occur only if oli and d] are
both null or belong to the same special component. Since the only
special components which correspond to finite groups are of type A2’
A3 or Dq, perhaps this helps to explain the exceptional role played
by these types (A2 is too small) in the finite case.

Another example of some interest is the case when [7 is the

graph
4 4 3 e (14)

There are four equivalence classes of basic systems, corresponding

to the following choices of values of elements (n12’n21’n23’n32) in N
(=24-1,-1,-2); (-1,-2,-1,-2); (-2,-1,-2,-1); (-1,-2,-2,-1).
Since det N = -2, the only choices for /A in each case are Q(B) and
P(B); however, the latter choice is disqualified in all but the second
case because of the presence of null elements. Thus there are five
lattices to consider.

For example, in the first case o<1 is null, but distinct o(i are
not equivalent, We have e= 3, ¥=1and p~= 1, so that Im(¥ ) is

isomorphic to ( Z/2 Z) . The elements of H;ym(K,VK/P(B)) correspond

to matrices X whose only nonzero entries are X190 and Xpqe The class
{t 3 belongs to the image of ¢ if and only if x,12 2 and x23
belong to Q(B). However, l-’2 = =(3/2 =y +3 °‘2+2 o(3+ d4) ¢ Q(B), while

Wy = -(2 o'-,l+4 K 42 Oty O ) € Q(B). Therefore x32 = 0, but x,, may
equal O or 1. Therefore H (K,V/A) = (Z/2Z)

= - 3 = = 3

1 (o(,1+3 °<2+2 Syt X ), v, o5y Vg X+ Ky
and v, = ol + %3+ &, form another basis of Q(B). However, if {aigied)

is the unique symmetric bilinear form on V left invariant by K, and

The elements v

normalised by (‘* “1) = 2, one sees that the v, are mutwally ortho=-
2,3,4. Thus Q(B) is
the "cubic lattice'" in space-time considered by Schild f‘ﬂ Coxeter

and Whitrow [3] and Zassenhaus and Plesken [10]. The group K is shown

i
gonal, while (Vi"' ) = -1 and (vl,v ) =4 ford &

there to consist of all integral Lorentz transformations. (The calcu-
lation of Hj(K,V/A) in [10] is, however, erroneous.)

3. The group H1CK+,V/I\).
The rotation subgroup k¥ of K consists of those elements of K
which can be written as a product of an even number of the si's.

Choose an element %0 € B and let 9; = S5;Sg for i # 0; then qieK+
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Since gig; = 5153 the gi's generate k* and the obvious relations
gilo & (gigj-.l)mij =1 (15)
form a presentation of K* [1,p.38). we exclude the trivial case of
dim VK = 1; it is then clear from (7) that T VK.
In general, if G is a group, H a normal subgroup of G and A a
G-module, we have the exact sequence
0 = uleo/m, Aty 105 416, a) E25 01 eH, )0 —5 n2(a/m A . (18)
suppose furthermore that G is the semidirect product of H and a cyclic
subgroup (1,51 of order 2. Then HZ(G/H,AH) is isomorphic to AG/(1+s)AH
and the homecmorphism € can be described as follows. If {t]eHl(H,A)G
we have 5t - t = Sa’ the coboundary corresponding to some a € A,
unique up to elements of AH. Then (1+s)a €& AG and £ associates the
class of (1+s)a to {t] . If this class is zero, i.e, if (1+s)a = (1+s)b
for some b(AH, the cocycle t extends to a cocycle G—>A by defining
t(s) to be b=-a,
It follows from (15) that, if A is a K¥-invariant lattice, a

function t: {qis—v‘l induces a cocycle—t:K*———‘aV//\ if and only if

N(s;s oltlgle N N(sisj)t(gi) = N(sjsi)t(gj) mod A (17)
whenever m O< o and i £ j, mij<°° respectively. Let ui}. =
<tlgy), )

5uppose that A is, in fact, invariant under K (this need not
always be true [2,6]) and apply (16) with G = K, H = K", s = 55 and
A=V/A. Then a° = A%/A, A" o AF/A L uhere
A e vevivegve A forall i 40} - Kol
and AC/(1+5)aM is isomorphic to
E(A) = P(B)/( /\ + (‘l+so) nE ). (18)

Note that since P(B) < /\K, we have 2P(B) < (1+sy) A¥ x» which shows
that E( % ) is annihilated by 2,

1f {#) e b (k*,v/ MK, we have

( Ot - t)(qi) = -Zt(q ) + S(g Y5

where a = Zl,‘o U@ It follows flrst of all that H (K V//\)K
is equal to the subgroup H (k* V//\) of all elements in H (K+,V//\)
annihilated by 2. Every class in H (K V//\) contains a cocycle
T with the property 2% = 0 since if, in general, 2t equals a coboundary
5V, we can replace t by t - Sv/z. Confining our attention to such
cocycles, for which 2uij € Z (we depart here from the conventions of (_2])
it follows from the above discussion that the homomorphism & asso-

ciates to{t} the class of the element (l+sj)a - > 140 2uj; @, €P(B)
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in E(A)., We thus obtain the exact sequence

0—>H2 /K, A%/ A) 205 Wik, v/A) E2S HIKY,V/A ), — B(A). (19)
To obtain further information about § , one can work out eqns.(17)
explicitly, using Lemma 1, for a cocycle T satisfying 2E = 0. This
results in the following conditions on t (where i,j # 0):

(By) if myg = 2, uy. &+ u, g%, € N;

(Ey) if myy = 3, t(g;) = u;; %y + u;q ot mod N;

(EB; :.Lf myy o= 2 (uii+uji) o = (ujj+uij) o(j mod A\j; N =
(54 1f mis o= 3; t(gi)+t<g ) = (ujj"uij)“i + (uii”"ji) 3 mod .

From (Ei) it follows immediately that u,. € Z unless ociﬂuﬂ~ﬂ0 or
mio‘72. In calculating 2({?3), it therefore suffices to consider
only such values of i,

Suppose now that K is finite. If B contains a component B' of

type other than C we can choose o&OG.B' in such a way that it is

-11
joined to precisely one element o, €B', with ng, = -1. Then

0'~0 = 200 - 91, so that the class of @, is zero in E(A). Therefore,
by Lemma 7.1 in (2] (with L
of type D, n25), we have edTh - 2uy;, @, = 0, unless B' is of

type Ay,B,,B, or D,, when €({E]) = 2u,, @, in the first three cases
and £({t}]) = 2uy, @, + 2ugy @4 in the fourth. In the case of B,
By, Uy, ¢ Z only if o, ~ o, which implies that @, € /\K and hence

e({t}) = 0. In the case of Dy, if not all of &, ®,, o, are equi-

chosen as the first root in case B' is
or

valent mod A, we can assume that 9(0 is not equivalent to the other

and &

two, which forces u,, and uj,y to be in Z ; otherwise, w 3

g» SO that again a(‘_'Ef) = 0.
We are thus left with the case when all components of B are of

2
are in A

type C1 or A3. I1f TT is such a component, let @ be the weight
corresponding to the last element in 7T, and let /\e be the sublattice

of index 2 in P(B) spanned by Q(B) and all elements of the form 2wy
and W, + Wt (T # '), Also let TyreeesTy, be the equivalence classes

mod A of null elements in B. Call A a special lattice if it satisfies
(1) A, = A

K e’
(i) 2w e Ay for o8 TT
(iii) Ti has an even number of elements for i = 7,...,0;
(iv) if B is of type Cy®een XCy, /\K # Ae'
It is demonstrated in [2] that £ assumes a nonzero value precisely
when A is a special lattice. Furthermore, apart from the case

when B is of type C, x... %Cy and /\K = Ae, I\ﬁ = P(B) if K is finite,
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Therefore E(A) is cyclic of order 2 for special A, which shows that
the image of res is then of index 2. It also follows that the first
group in (19) is isomorphic to (Z/s2 Z)f“, with a as defined earlier;
in the exceptional case, it is isomorphic to (2Z/2 Z)?k , where
A = dim VK, unless dim VK is odd and ZK = AK' when A = dim VvV
Once H‘l(K“,\.r//\)2 has been determined from (19), the calculation
of Hl(K+,V//\) reduces to that of the subgroup 2H1(K+,V/A ), in view

K+‘1.

of the exact sequence
0 — HUKY,v/A ), — HYKT,v/A ) —= 2rY kY ,v/A ) — 0.
when K is finite, the latter is usually zero or guite small [2]. However,
in general it may happen, as in the case of
3 @ "

(when k' is isomorphic to the modular group) that Hi(K+,V) # 0 and
2H1(K+,V/A) contains factors isomorphic to R/Z. One also has to
consider separateiy lattices A which are only invariant under K*.
it is shown in 2] that if K is finite and dim Vg » 3, the normaliser
of K* equals the normaliser of K.

A translation between our notation and that of classical crystallo-
graphy for dim Vv £ 3 can be found in [2] and [4]. For further relevant

results, see [7] and [8].
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