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1. Introduction

This is the last in a series of three papers on the construction of n-dimensional
crystallographic groups and their subgroups. In the first paper [3] we proposed an
algorithm for the construction of partially periodic groups from the point groups.
Subgroup-relations of space groups and partially periodic groups were treated in the
second paper [4]. There we showed in particular that the problem of finding all sub-
groups can be reduced to the determination of

type [-subgroups ("zellengleich", translation equivalent),

type II-subgroups ("klassengleich", class-equivalent), and

type I1I-subgroups.

Sometimes one is not interested in the complete subgroup lattice of a crystallographic
group but rather in the affine types of the subgroups. Therefore, we propose in the
present paper dimension-independent algorithms which for each pair (C,C*) of n-
dimensional crystallographic groups
1) decide whether or not C* can be embedded into C, i.e. C contains
a subgroup U with linear constituent P(U) =P(C) such that U is
affinely equivalent to C*,
and if so,
2) calculate all embeddings of C* into C.
In particular, all type II- and type III-subgroups are calculated. As the algorithm
for problem 1) is essentially a simplification of that of problem 2), we first treat
problem 2) in Chapter 2 and then problem 1) in Chapter 3.

The algorithm for problem 1) was implemented on a computer, and the affine classes of
subgroups of all two- and three-dimensional space groups and partially periodic groups
were calculated at the "Rechenzentrum der RWTH Aachen".

Moreover, crystallographic equivalence instead of affine equivalence can be treated
by slight modifications of the algorithm., For n<3 or n odd this leads to the same
subgroup-relations ([51).

I like to thank Professer J. Neubiiser and Dr. W. Plesken for reading this paper and
supplying helpful criticism.
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2. Finding A1l Subgroups of a Given Affine Type

Whenever possible, we use definitions and notations from the preceeding papers [3]
and [4]. Throughout this paper let

C={{v, +t,p)IpEP, teZ*} and C*:((v;¥+t*,p*)|p*e P*, the [T}
be crystallographic groups with linear constituents

P<GL(r,Z) x GL{n-r,Z) and P*<GL(r*,Z) x GL(n-r*,Z),|P| = [P*|,
and vector systems

viP>PI71.Z% and vk :Px- (Px7l. 7Y%
respectively. We shall derive necessary and sufficient conditions that C* can be
embedded into C, i.e. C contains a subgroup U affinely equivalent to C*.*! These
conditions are formulated as systems of rational and diophantic equations, which can
be checked by a computer. The set of all selutions of the equations describe all
embeddings of C* into C.

To reduce the number of candidates C* which can be embedded into C, we note:

2.1 Proposition. If the (n,r)-group C contains a subgroup U affinely equivalent to
the (n,r*)-group C*, then
a) rarx,
b) the linear constituents P and P* are Q-equivalent, i.e. they belong to
the same geometric crystal class,
c) the order |v| of the vector system v of C divides the order |v*|.

Proof: a) and b) are obvious.

c) We can assume that v is also a vector system of the subgroup U, i.e.
U= {(vp+t,p)|p6 P,teM}, M<ZE.

As C* and U are affinely equivalent, |v*| is the least positive integer such that
U‘={Uv*|-vp+t,MIpEP,teM}

is a split extension of M by P. Therefore,
C'={(Iv¥l - v, +t,p)IpEP,tel™}

also splits, and thus |vl divides |v*|. o

2.2 Remark. The necessary conditions b) and c) of Proposition 2.1 can be considerably

sharpened. As far as b) is concerned, this is done in the next proposition, and in
the case of c) it would not simplify the announced algorithm.

2.3 Theorem. C contains a subgroup affinely equivalent to C*, i.e.
(usx) « C*« (u,x)'1<:c for a suitable affine mapping (u,x)€A(n,R), if and only if
there exist

ueEQ* and x= (S f:) €GL(n,0) with x'ezrxr™

(and with x*=0 for r=r*) such that

*)

Since we have required the linear constituents P and P¥ to have the same order,
P(U) =P(C) =P. The subgroup U need not be of type II or of type III, it can be a
type II-subgroup of a type IIl-subgroup of C.
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(1) xP*x~1 =P,
{1'y v_=x-v* +({e-p)-umod Z* for all peP.
2 ok
Al subgroups (u,x) - C*- (u,x)”! of € can be found as solutions of (1) and (1').

Proof: Let C* be affinely equivalent to a subgroup of C. Then there exist X€ GL(n,R)
and 0 = [3..
inte translations,

] € R™ such that (U,%) - C* - (u,i)’1<c. Since translations are transformed

%-77%<77, and thus %= (S i*) L xlegsTt
\!
Let u'] X for r+ r*
u:=|:0“| and X := %' 0 4 ey
0 x" or r=r

From

Zp*xt = prxl

for all p*ep*
and
(,X) « C* - (G,%)7!
) - [(vAy + t2,p%) Ipre protre =} - (=% - 0,571
e t* - Xp*x L. G, XprR Yipre Pr treZr*)
t P p
C+(e-p) - a+t,p)lpexpril tex . 2T
X

= {()_(-v*
i—lp

<C={{vy+t,p)IpEP,teL’}
we derive that

(0,%) » C* = {U,%) ™" = (u,x) - C* - (u,x)7L,
and the stated formulas (1) and (1') follow immediately. Moreover, we can assume
without loss of generality that x and u are rational instead of real because they are
solutions of the systems of the rational linear equations

X-p*=p.x for pr€ P* and suitable peP
and

(e=p) U=y mxove
respectively.Since Q%" is a dense subset of R™™ and the determinant is a continuous
function, there is a solution x€GL(n,Q) if there is one in GL(n,R) ([2,p.200], see
also [3, Theorem 3.31).

+1t, for peP and suitable tErx,
X

The converse follows directly from the above computations. o

2.4 Corollary. Let
Lorollary \ .
xP*x~1 =P for a matrix x = (8 ;:) € 6L(n,0), x' €07,

(For r=r* this means that P and P* are {xQ-equivalent.)

a) If C is symmorphic, i.e. a split extension of Z* by P, then C contains a sub-
group affinely equivalent to C*.

b) If C* is symmorphic, then C contains a subgroup affinely equivalent to C* if and
only if C is symmorphic, too.
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Proof: a) We can assume that vp=0 for all p€P. Multiplying x with a suitable integer,
we can assume that x€ [P - Z™*™. Now the conditions (1) and (1') in Theorem 2.3 are
fulfilled.

b) If C* can be embedded into C, then [v| divides Iv¥] =1 by Proposition 2.1 c),
and hence |v| =1. The converse follows from a). a

Theorem 2.3 yields an algorithm for determining the subgroups of C that are affinely
equivalent to C*. The matrix x of Theorem 2.3 induces an isomorphism
©: P-P* defined by o(p) :=x"'px
that leaves invariant the determinant and the trace of the matrices. Therefore, we
can formulate the first version of our algorithm as follows:
- Determine the set
I'(P,P*) := {@: P=»P*|yp isomorphism, det ¢(p) = det p,trace ¢(p) = trace p for pEP}

- For each ¢ €I'(P,P*) determine the set of all
XEGL(n,0), uEQ® which for all pEP fulfill the conditions

(2) x-o(p)=p-x, x= (él ;:) , X' €27 (and x*¥=0 for r=r*)
(2") vax-v";{P)+(e—p)-umodl’:,

Let ¢ : P~>P* be a fixed isomorphism induced by a rational matrix. Then

I'(P,P*) = {y:P*=>P*[y automorphism, det y(p)=detp, trace y(p) = trace p for pEPly.
and the automorphisms can be determined by a slight modification of an existing
computer program ([61).

Obviously, (2} and (2') have only to be checked feor a set of generators py,...,p, of
P, and I'(P,P*) can be replaced by
I(P,P*):= {y:P*~+P*|y automorphism, det ¢(p;) =det p;,tracey(p;) = tracep;
for i=1,...,klc 0

Since (2) is a system of homogeneous linear equations, one can easily calculate a
Q-basis 5
1 XE G}
1 4] b b nxn
Xy = W) o seees Xp= ( ) €Q
1 (O "1) 0
of the rational solutions of ({2) such that for a suitable t<b
) | rxr*
XpseneaXy €z
is a Z-basis of the integral upper blocks x'El”r* occurring in the rational
solutions x€ Q™" of (2).

Using the methods of the generalized Zassenhaus algorithm ([3]) and setting
X'=2y xi+ e Pk x't, AiEZ,

we can transform (2') into a system of diophantic equations
F-x=Wmod Z°, A€Z".

The set of solutions
A:={X€Z%F - A=W mod Z°}
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can be calculated by methods similar to those of the Zassenhaus algorithm (see [11s
[31}.

Therefore, the solutions x of (2) and (2') can be parametrized by

x:kl-x1 LIETTIR P IR S {)‘1"""“1;) €A, \Hl, s ,,\bem, det x# 0.

As the set A and the polynomial det x can be calculated by a computer, it is usually
very easy to describe x explicitely. For each fixed x€6L{n,Q) the solutions ucQ®
of (2') can easily be calculated, and hence all subgroups (u,x) - C* - (u,x)_lof C can
be calculated.

Different solutions (u x) and ({,x) of (2) and (2') yield the same subgroup
(U} * C% « (uyx)™L = (T,R) - 0 - (G,%) 71

of C if and only if (U,X) lies in the coset (u,x)'N

C* in the affine group A(n,R}.

. ;
Am’R)(C } of the normalizer of

The whole algorithm for the determination of the subgroups of C affinely equivalent
to C* is described by the following refinement of our first version. The algorithm
is formulated for the case r>r*, but the modification {and simplification) for the
case r=r* is obvious.

2.5 Algorithm for determining all subgroups of C which are affinely equivalent to C*.
If r>r* and P is Q-equivalent to P* and Iv| divides Iv*| then
- determine the group of isomorphisms I{P,P*),
- for each @€ I(P,P*) Xi xf x;] x;
- calculate a Q-basis X, = (0 x.l) 3 wees Xp = (0 x;; of the solutions of
i S, % s 1 ' W rxr* y .
X tp(pi) =p; "X, i= 1,...,k,such that Xgoem X forms a Z-basis of Z le""’xb@
- if det( Xyt +Ab . xb) is not the zero polynomial, then
- * *
determme le( py) "Vw(pk)’
- transform the congruences
(%) Vo, = (A = xj+ o 42 o xl) v W rsd +{e'-p)rumod I, =1, 0k,
into a system of d1ophant1c equatmns F-x=Wmod Z°, \E.Zt.
determine the set A= D\EZ‘ | F+2=W mod 2%},
determine the (empty or infinite) set of matrices
= = - ‘ tr -
)<—{)<—)\1 Xy +Ab xb1 (Al,...,At) €A, det x# 0},
for each x€X

- calculate all solutions u of {x) and form the corresponding subgroups
(u,x) - C* + (u,x)"" of C.

2.6 Example: We determine such subgroups of the space group

SE D Al )

(Hermann-Maughin-symbol P4,) that are affinely equivalent to the (3,1)-group
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- (([5]6))

Let P:=P(C) =P*:=P(C*) = <p:= (

1/2
. .o (17
VL 8 s W3 (1/4].

The group I(P,P*) consists of the isomorphisms
@ :P>P¥ with @, (p) =p
@, P> P* with wz(p) =p3.

Let ¢ =0, Then

100 000 000

X, = 000}, x,={010]} , x = 00-1)

000 001 010

forms a Q-basis for the solutions of x -@(p) =p - x, and
1

X) = (0) forms a Z-basis of 23! Ny %5 Xy

0

Congruence () becomes

1/2 1 100 10
0 EAI-(O)- [1/4]1 + ((010) = (00
0 0 001 01

ie. 1/2=1/4- %, mod Z, (F-x=Wmod Z%, x€Z%)

0= u, +uy mod Z, (]E-uzi\u3 mod Z.

,Q i
u

)) ué mod Z°
Y

Therefore, A={XEZ| A= 2mod 4} =4Z +2, and the set X consists of the matrices

oko

)&10 0

X = 0 )\2-)\3 s Ale41+2, lz,xjem,
0 Aa 12
_ .

Otdetx-)\l (A2+A3), i.e. A, #0or )«340.

The solutions u of (*) belonging to x are
1
uleo), uz’uae?’z’

and the subgroups of C belonging to x and u are

5] -

They are mutually different.

L (S
+u36l,b U, + Uy I.

2

A
1
tel 0 -.Zl>,}\64.l+2,a=u 5
0 1

Now let w=q,. Then

100 000 000
X = 000).5: 010 ,x,;=(001
000 004 - 010

forms a Q-basis of the solutions of x -w(p)=p-x, and



= 5

i
e pes > z ‘ 3x1 Vs
e (8) is a Z-basis of Z n (Xl’xz’x3)qg'
* =
As vw(p) [3/41, congruence (*) becomes

1/253/4-)\1 mod 7,
0=u_ +u_mod Z, 0=-u_+u_ mod Z,

P 23
Therefore, A={)\1€lI3A1E2 mod 4} =4Z+2 and
)\10 0
. = i ez g 2
K=fx= 10 Xk MEATHZ, A €0, det X=-k (A 4A5)F0 ¢
0 )\3—?\2

and the mutually different subgroups of C belonging to ©=@, are

34 n, A
3 + t,p ‘ te |0 -11> A E4L+2, a,bel.
b 0

The subgroups belonging to ®, are mutually different from those belonging to @, -
(They are affinely but not crystallographically equivalent, i.e. enantiomorphic). o

3. Deciding whether or not a Crystallographic Group Contains Subgroups of a
Given Affine Type

Theorem 2.3 yields an algorithm for deciding whether C* can be embedded into C.
This algorithm essentially checks for each isomorphism @ : P-P* whether there is

LVE 3 z
a matrix x = (é in) € GL(n,Q) with o(p) =x 1px for all peP such that the
{n,r*}-group (0,x) - C*¥ - (D,x)'1 is translationally equivalent to a subgroup U of C
{see Algorithm 2.5). Let ¢ be an automorphism of P* induced by a matrix _y_l,

]
y= G; 3.) € Nzxqg(P*)' Then (0,x) - C* - (0,)()_1 is translationally equivalent to U

for a matrix x€GL{n,0) inducing ¢ if and only if there is a matrix z=(2 =

Z") € GL(n,Q)

inducing ¥ o so that (0,z) - (0,y) -« C*- (0,_\,«)_1 - ([}.z)_1 is translationally
equivalent to U {choose z :=x - y'l). Therefore, we need not consider all isomorphisms
g:P>P* if we take into account the (n,r*)-groups
o P =

(0.y) - C* - {0.y) 75 YEN, (PF)
instead of C* only.
This trade-off between the number of isomorphisms ¢ and the number of groups
(0.y)  C%+ (O,y)_1 reduces the amount of calculations consideralby since the groups
(0,y) " C* - (0,y)7! are atready calculated in the generalized Zassenhaus algorithm ([31).

To fomulate this result more precisely, we call isomorphisms ¢,p: P~ P* induced by

; _(xoxx =[x x* ; i ;
matrices x = o xv »X=\g 3o € GL(n,Q) equivalent if @o @ ~ is an automorphism
i . _[y'0
of P¥ induced by a matrix y= (0 y') = Nzxq;(P*)' Let Irap(P,P*)CI(P,P*) be a set of
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representatives of the so defined equivalence classes. Then

Lp(P P =A_ (P*) 0,
where Are (P*) is a set of representatives of the cosets of the automorphism group
i * j i i % i *
induced by NLXQ(P } in the automorphism group induced by NQXQ(P ). Since NIXQ(P )
has already to be known for the generalized Zassenhaus algorithm, Arep(P*) can
easily be determined.

3.1 Theorem. Let

1

C;.‘={(vi’ +tH,px) | prepr, tre 77}, v];) etz =1, .0,

be representatives of such classes of translationally equivalent (n,r*)-aroups which
are affinely equivalent to C*.Then C contains a subgroup affinely equivalent to C*
if and only if there exist a group C;, an isomorphism @€ Irep(P,P*), a vector
ueQ, and a matrix

X= (x‘ x*) € Q" with xt e et (and x*=0 for r=r*)

0o x"
(we do not require x to be regular) such that for all peP
X o(p)=p-x
e =x-v) d z*
vp—x-vw(p) +(e-p)-u mo

Proof: Since C;‘= (uj,_yj) ¢« C* . (uj,yj)’l for suitable quQr* and ijNsz(P*),
the assertion would follow immediately from the corresponding Theorem 2.3 and the
above remarks if we had required that x be regular. So we only have to show that,
if there is a solution x of (), then there is one with detx# 0, as well.
Let (%) be fulfilled by ¢, u, and x and let ¢ be induced by
y= E" ;’) € GL(n,0Q) N Z™™ (with y*=0 for r=r*). Then (*) is also fulfilled by
@, u, and

X:=x+z.IP| -y, z€Z,
and

det X=2"- det (3. x+1PI-y)+0
for sufficiently large z€Z since the determinant is a continuous function of the

entries of the maxtrix. o

We formulate the resulting algorithm for r=r*. The modification for the case

r=r¥ is obvious.

3.2 Algorithm for the test of whether or not C contains as subgroup affinely

equivalent to C¥.

If r=r* and P is Q-equivalent to P* and |v| divides Iv*|, then

- determine the set 1*= {vl,...,vd} of vector systems which represent the

classes of translationally equivalent (n,r*)-groups with linear constituent P*
(generalized Zassenhaus algorithm),
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- determine the set of isomorphisms Irep(P,P*)
- for each pe IIEP(P,P*)

- calculate a Z-basis xi,..

~o(p)' =p; %', i=1,.0k,

* .
.,xéelrxr of solutions of

X
- for each vector system vier

- transform the congruences
j
©lp;)
into a system of diophantic equations
F+Aa=Wmod Z°%, reZ®,

= % 5 i o miy g i
Vpif(?»1 Xy #n e 3 2 XYY +(e'-p') - umodZ

- if a solution A exists, then
C* can be embedded into C; STOP.

- C* cannot be embedded into C.

4. Conclusion

If one applies the developed algorithms to all pairs (C,C*) of n-dimensional
crystallographic groups belonging to a fixed Q-class, then obviously all subgroup-
relations between the groups of this §-class are known. As the methods used in the
algorithms, namely solving systems of diophantic equations, are similar to those
of the generalized Zassenhaus algorithm, one might hope to reduce the amount of
computation by simultaneously constructing all (n,r)-groups of a Q-class and
determining the subgroup-relations between them. Further investigations may show
whether this is practicable or not.
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