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Abstract:
The existence of incommensurate crystal phases requires a generalization of the concept
of crystal symmetry. Indeed, although an incommensurate crystal has a 3-dimensional
structure, its Kuclidean symmetry is not a 3-dimensional space group. Furthermore this
Euclidean symmetry does not give a characterization of the regularities observed in

the corresponding diffraction pattern.

Enlarging the group of admitted symmetry transformations by introducing suitably de-
fined internal degrees of freedom, one gets a symmetry group which is isomorphic to

a space group in more than 3 dimensions. Accordingly this generalization can be des-—
cribed through an embedding of the crystal in a higher dimensional Euclidean space

(the "superspace") spanned by the 3-dimensional space and by the d-dimensional inter-
nal one. The dimension of the superspace is given by the minimal number of indices
needed for labelling the Bragg reflections. In particular for d = 1, any satellite
reflection can be indexed as ha* + kb* + lo* + ma, where ; = aZ* + gb* + vg*: incom-
mensurability then implies that at least one of the w, B, v is irrational.

The different nature of positional and of internal space leads to additienal proper-—
ties of the higher dimensional space group , which is accordingly defined as a (3+d)-
dimensional superspace group. This generalized crystallographic group is uniquely de-—
termined (up to equivalence) by the crystal structure, and reduces to a space group

for commensurate crystal phases.

A number of incommensurate crystal structures is considered like NaZCO TaSe.

(TTF)715_X and ng_éAsF

30 KySe0,, 2

6 Their regularities are expressed and interpreted in terms of
superspace group elements. These examples prove the relevance of the superspace group
approach in crystal physics.

The Bravais classes for d up to 3 have been determined and a full list of inequivalent

superspace groups for d = | has been established. It is a remarkable fact that the
superspace group generalization allows a unified treatment of both the commensurate

and the incommensurate crystal phases known so far, which emphasizes the relevant for-

mal properties of classical crystallography.



1. Euclidean Crystallography

A crystal in the usual sense is here described by a scalar density function or matter

. . . > . ry T
distribution p(r) having a Fourier decomposition as follows:

- I e ALE
p(z) = S pk)e (1.1
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with A* a 3-dimensional lattice in the reciprocal space. Denoting by aT, az, a§ a basis

of this lattice one has accordingly for any Fourier wave vector K appearing in (1.1):

K =
i

oW

%
* -
| z; af m(z], Z,, 23)* (1.2)

with 25 2y 25 2 set of integers.

Denoting by g = (RI;} an element of the Euclidean group in 3 dimensions E(3) where:
gr = RT + v (1.3)

the symmetry group G of the crystal described by p consists of those Euclidean trans-

formations (1.3) which leave p invariant:
p(gt) = p(¥) g€ G E®) (1.4)

The corresponding invariance condition expressed for the Fourier components (k) is
given by:

L

iRk.v

Bl) = B(RK)e (1.5)

One easily verifies that for p as in (1,1) its symmetry group G is a 3-dimensional
space group: i.e. a subgroup of E(3) whose translations a= {l|3} are lattice trans-—
lations generating the 3-dimensional space., A 3-dimensional space group G is indeed
defined by:

i) G ©E(3), (i) enT=n=23 ({ii) (A} = R (1.6)

. -+ . g .
where A is the set of vectors n reciprocal to all k € p*, solution of:

7k = O(mod 2m) (1.7)



Accordingly A defines a 3-dimensional lattice reciprocal to A* . Its elements, re—
R > > Y
ferred to a basis a;, a,, al dual to the one considered above take the form:

o 3

n = E n. % o ,n,,n, integers ., (1.8)
This explains (1.6) (ii) and (iii).

The homogeneous parts R of the elements of G form a subgroup of the orthogonal group
0(3), which is called (crystallographic) point group K: In addition to the translations
= {l‘g} which form a normal subgroup A of G, translation parts (or inhomogeneocus
components) v = ?(R) may oceur in G for R # | which are not lattice translations and

are thus called non-primitive translations. A set of representations 3(K) = {3(R) for

R € K} of these, together with the pointgroup K and the lattice group A yield a full

characterization of a space group G. We write:
-
G = {K, A, v(K)} (1.9)
and mean that a general element g € G can be written as:
g = (R|n + v(R)} (1.10)

with R € K, E € A and 3(R) € ;(K). For more details see e.g. refs, 1 and 2. Concluding
this introductory section the reader should note the following basic facts of Eucli-
dean crystallography:

(i) Any crystal has a space group (of same dimension) as symmetry group.

(ii) Any matter distribution with space group symmetry is a crystal.

(iii) The symmetry of a crystal reflects the Euclidean character of the space in which
it oceurs.

These fundamental properties either are no longer true or give rise to serious problems
in the case of so-called incommensurate crystal phases. In the next section the expe—
rimental evidence for the existence of such phases is reviewed on the basis of a num-

ber of cases.



2. Incommensurate Crystal Phases

The symmetry of a crystal is temperature dependent, first of all because of thermal
expansion, which changes the group of lattice translations and thus the whole space

group:
A = A(T) implying G = G(T), (2+1)

secondly because of possible phase transitions. The space groups of a given crystal
for temperatures Tl, Tz within a same crystal phase are isomorphic, and one usually
attaches to a given crystal phase a representative of the corresponding class of iso-

morphic space groups:

G(Tl) = G(T,) = G . (2.2)

2
This is in general not the case for space groups at temperatures belonging to different
crystal phases. For transitions involving a contlnucus structural change (and thus of
second order) very often space groups above and below the transition temperature Tc

are in a group - subgroup relation:

G(TO) 2 G0 ] G] = G(T]), for T0 > Tc and Tl < TC . (2.3)

Let us consider here the case where this group - subgroup relation also occurs for the

corresponding groups of lattice translations. Then we have:

Al = AD and thus AT 5 Az (2.4)
and one says that the low temperature phase (T] < TC) forms a superstructure of the
high temperature one (To > TC), which is then called undistorted phase. This nomencla-
ture is based on the fact that the low temperature elementary cell is a multiple of
the high temperature one and is thus called supercell.

: o B - 5
Consider a basis {ali} of A and one {aai} of Ao' Then one can write:

1

3
= E 8 s (2.5)

with Sji integer coefficients. The corresponding reciprocal basis transformation:

3
Tk = * ok
al; jz] Sji aoj (2.6)



involves rational coefficients S?i. Using the same basis {sz} for deseribing both the
high- and low-temperature Bragg reflections, one sees that because cf (2.4) all high
temperature reflections have integral coefficients (indices) and also occur (in gene-
ral) in the low-temperature phase, In addition to these, so-called main reflections,

others appear, with rational indices now, called satellite reflections.

Equation (2.3) implies restrictions on the possible relative coordinates of the sa~-
tellite reflections with respect to the main ones. Indeed, e.g. the index of A] in AO
(i.e. the ratio of the corresponding unit cells) has to be temperature independent.
This last property is not chserved in the 'y—NaZCO3 3). Accordingly P.M. de Wolff et
al. *) considered irrational indices as well, which imply incommensurability of the
periodic deformation responsible for the satellite reflections with respect to the
(undeformed) basic structure one can associate with the main reflections. This first
case of incommensurable modulation %) leads to the concept of incommensurate crystal

phase. Various examples of such phases will be considered now.

(i) First Example: NaZCO3

In fig la the various phases of Na2C03 are plotted as a function of temperature. The
relative position of the modulation wave vector 3 with respect to a basis ;;, ﬁ:, gg
of the lattice of main reflections is plotted in fig. 1b as a function of temperature.
The continuous variation cannot be described in terms of a superstructure satisfying
eq. (2.3). Indexing by rational numbers for a = (q](T), O,qz(T))*, is therefore not
meaningful, This implies that in the direct space there is no elementary cell of fi-
nite volume, and the modulaticn, expressed in fig. lc in terms of a set of distances
among neighbouring atoms, is incommensurate with respect to the basic structure: the
position of the atoms within the unit cell spanned by 30, ﬁo, 30 varies from cell to
cell in the way suggested by fig, 1d.
At -138°C there is a phase transition to a &-phase ©) which is a superstructure of the
g-phase characterized by a commensurate modulation. The locking of the temperature de-
pendent indices in the temperature independent (and rational) ones of the modulation
wave vector:

1

& (g, (1), 0,050 G4 0, Py 2.7

is called a "lock-in" phase transitiom.

(ii) Second Example: KZSeC}4

This compound has been investigated by Iizumi et al. 7). The "intermediate' incommen—
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surate phase indicated on fig. 2a is induced by the softenning of a phonon mode as
revealed by the temperature dependent dispersion branches (see fig. 2b). Again there

is a continuous varying ratio of the modulation periodicity with respect to an under-
lying lattice periodicity as a function of the temperature (fig. 2c) which implies
incommensurability. Below 53 K, in the ferroelectric phase, such a dependence disappears

and the corresponding modulation wave vector shows a lock-in phase transition:

@ (28 0,0, » (30,0, 2.8

(iii) Third Example: TaSe,

This compound also shows a displacive incommensurate modulation and a lock-in tramsi-
tion to a (commensurate) superstructure (fig. 3a) with respect to an indistorted hexa-
gonal high temperature phase (fig. 3b).

The interest of this example lies in the two-dimensional character of the modulationm,
as revealed by a set of main reflections and satellites observed (fig. 3c¢). The de-
viation from the rational value of %— is a continuous function of the temperature in
the incommensurate phase (fig. 3d). In this ewample the modulation is induced by a
charge density wave (CDW) in the conduction electron gas of this compound. The repor-
ted results have been taken from a paper by Moncton, Axe and DiSalvo 8) In the same
group of layered structures other examples of incommensurate crystal phases have also

been reported ?) by another team.

(iv) Fourth Example: (TTF}715_x

The structure of this compound can be described in terms of two subsystems. The first

one formed by the tetrathiafulvalene molecules (TTF = (CBSZHZ)Z) with space group sym-

metry G, = C2/m and lattice Al’ and the second one consisting of Iodine atoms which

has spale group symmetry G2 = A2/m and lattice AZ' The two lattices are mutually in-
commensurate (fig. 4): one speaks of a "composite' crystal. In addition one observes
displacive modulations due to the interaction between the two subsystems. The struc—
ture including the modulation waves, has been investigated in detail by Johnson and

watson 10).

(v) Fifth Example: Hg}—ﬁASFﬁ

This compound is also of the composite type and involves at low temperature three mu-

tually incommensurate ordered subsystems, The first one, formed by the As and F atoms
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has space group symmetry G, = Utl/amd; the second one involves a set of parallel chains
of mercury atoms along the [100] direction perpendicular to the previously mentionmed te—
tragonal axis and has space group symmetry G2 = A2/m. The third subsystem consist of the
mercury chains along the [010] direction defined by the Asl-‘6 subsystem, and has space
group symmetry 63 = B2/m (fig. 5a). Incommensurability arises because the periodicity
along the Hg chains (aHg) does not fit whit that of the AsF6 lattice (aAsF&) (fig. 5b).
One has:

a3 - 6)aHg = aAsFﬁ (2.9)

with § = 0.18 at room temperature and temperature dependent (§ = 6(T)): the same &§-
value also appears in the (nonstochiometric) unit formula of this compound, This only
describes the gross structure: small deviations from tetragonality and induced modula-—

tion waves are also observed 11).
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3, Problems

Incommensurability of a crystal phase implies that:

- The crystal symmetry is not one of the 230 3-dimensional space groups.

- The Fourler wave vectors occuring in the crystal density are not necessarily ele-
ments of a reciprocal lattice (in 3-dimensions). Nevertheless the physical proper-
ties of incommensurate crystal phases are essentially the same as those typical for
a (normal or commensurate) crystal . It is even difficult to indicate which proper-
ties depend in a critical way on incommensurability. Accordingly this naturally

leads to the basic question: "What is a crystal?"

The Euclidean symmetry of an incommensurate crystal phase is fairly low (e.g. no
3-dimensional lattice periodicity is possible) and does not explain the regularities
of the diffraction pattern: main reflections, satellites, systematic extinctions,
a.s.o. Therefore the 3-dimensional Euclidean symmetry is a bad characterization of
the crystal in question. But then the second basic question arises: "Which symmetry
is a "good" one?”. In order to give an answer to this question the concept of inter-—

nal dimension is introduced.



4, Internal Dimensions

The concept of internal dimension is illustrated here by two typical examples. A firs
one involving a displacive modulation of a l-dimensional periodic chain; a second one

based on a simple model for a 2-dimensional composite crystal.

(1) First Example: Displacive modulation

The modulated crystal considered is obtained from a basic structure with space group
symmetry (fig. 6a) by a periodic deformation called modulation (fig. 6b). The charac
teristic diffraction pattern shows main reflections and satellites (fig. 6c).

In order to recover lattice periodicity the diffraction pattern is considered as be-
longing to the projection of a reciprocal lattice I* defined in a superspace by addin
to the positional dimensions the necessary internal omes. This corresponds to view th
modulated crystal as intersection of a pattern with lattice periodicity I and the po-

sition (sub)space (fig. 6d). Typical elements of L* are of the form:
k= @+3,q) €rx 4.1

5 & g > 2
with fd the wave vector of a main reflection (K € A*), E that of a satellite and EI the
corresponding internal component. Giving to the superspace an Euclidean structure one

gets from (4.1) the corresponding expressions for elements of the lattice I:
s=@, -, +dD €z %.2)

B 2B " i >

with n a symmetry translation of the basic structure (n € A), and —;I the correspon-
>

ding internal component related to qq by the condition:
> > > >
n.q = n.. 4.3
q 1°9; (4.3)
The vectors 31 generate a lattice D expressing (in the internal space) the periodicits

of the modulation (fig. 6e). From the atomic positions of the modulated crystal one

gets by L the corresponding ones of the (periodic) pattern in superspace called super
crystal. Typical situations arising from commensurate and from incommensurate modula-
tions are given in fig. 6f. Note that the number of translational inequivalent atoms
in the supercell of the position subspace is the same as that in the unit cell in su-

perspace. The corresponding analytic expression for a supercrystal og is:



direct space reciprocal space

~

commensurate case incommensurate case

Figure 6: One-dimensional modulated crystal. a) Basic structure.

b) Modulation. c) Modulated crystal and typical diffraction pattern.

d) Superspace description, e} Superspace lattices. f) Atomic positions
in the supercrystal.
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"s(;o’ 1:I) =z B(k) & P%o * D) (4.4)
i i
when the crystal p is defined by:
- > i?[;
p(r) =38k e "o (4.5)
k

- s 3 . . . > - .
Here T, indicates a general vector in the position space, r; one in the internal space;

. . n -~ . .
the Fourier coefficient F(k) is correspondingly the same in (4.4) and (4.5):

One verifies that indeed:
- >
plr)) = ps(ro, 0) (4.6)
(ii) Second Example: Composite crystal

The model considered consists of Lwo subsystems, each one having lattice periodicity
(A] and Az, respectively). In the example A] is generated by ;l and Ez; Az by ;2 and
gZ; such that one has:

> > > &

b, =b and al, a2 incommensurate | (4.7)
Applying to this model the same definition of supercrystal as in (4.4) and (4.5) by

defining, e.g.:

Gy = BN =0 and @D 0 (4.8)
one gets a supercrystal as pattern of lines in 3-dimensions whose 2-dimensional inter-
section (with the position space) gives the composite crystal (fig..7a,b). The addi-
tional internal dimension allows shifts in the relative position of the two subsystems.
Yet sections at different value of the internal coordinates yield equivalent (i.e. the
same) composite crystal: this because of the incommensurability between ;] and ;2. In
the commensurate case the supercrystal would here also consist of discrete points as

in the previous example.
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5. Crystal definition and crystal symmetry revised

The two examples of section 4 are here formalized in order to get an answer to the

questions formulated in section 3.

A crystal is defined by requiring for its density function p(f) a Fourier decomposi-

tion of the form:

+ o, ikr
p(ry = 1z blk)e
ke M*

with M¥ = 131'{l

(5.1)

, a so called z-module of rank 3+d and dimension 3. The ramk is the num-—

ber of linearly independent (with respect to the integral linear combination) vectors

generating the module M*¥(basis vectors). The dimension is that of the vector space

spanned (over the real numbers) by these basis vectors. For

The basis of M* is a%

case of eq. (1.1): M¥ = j*x = zs:

example in the classical

i at, ;3 (rank 3) which is also

basis of the(reciprocal) vector space (dimension 3). Thus d = 0.

In the previous example (fig. 6) of one-dimensional modulated crystal with incommensu-—

) —6—6—6—6—>06-

e o o 9o 9o & 8

— o & o o o

b)

I

Ve

Fig. 7 &) Two dimensional composite crys—
tal.

tion.

b) Corresponding supercrystal descrip—

rate E one has: M¥ = 32; Basis of M=:

¥ - 3*, 4 (rank 2). The reciprocal space is
generated by a* (dimension 1). Thus d = 1.
In the example of the composite crystal of

fig. 7 one has: M* = 3; Basis of Mx:
5.

a"“,
space is spanned by 3?, EE (dimension 2).

Z
35, 3T ='B§ (rank 3). The reciprocal

Thus d = 1. Quite in general: We call a
crystal commensurate if rank Mk = dim. Mk
and incommensurate if rank M¢ > dim. Ms.
In order to define the symmetry of a crys-
tal one admits {reducibel) Euclidean trans-
formations in the position and in the in-
ternal space. Thus:

g = (g,,8) € E(3) x E() (5.2)
where we use the same notation as in sec-—

tion 1:

8, = {R[v) € E®),
(5.3
gy = (R [V} € EC@)
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2’ 777 3+d
lattice A* (describing the main reflections in the modulated case, and an appropriate

. > - >, > > - .
One then chooses a basis aT, a¥ a¥* of M* such that aT, a;, a; spans a 3-dim

set of reflections in the composite crystal case), and a basis g*, fz, i ga in the
internal space. (This basis is taken formally at first and subject to crystallographi
restrictions afterwards. The reader is referred to a set of papers on the subject for
more details ) 3)). Then for any k € u* appearing in (5.1), which can always be

written as:

- 3+d -
= * 3
k ii] z; at . Zy s Zauy integers | (5.4
a corresponding internal component EI is defined by:
¥ = g b (5.5)
175 '

with coefficients as in (5.4).
A transformation g € E(3) x E(d) is a symmetry for the crystal p as in (5.1) if and
only if the relation:
a N _ o > .
Bk) = f(R K)e 5.6)
is satisfied for each of its Fourier coefficients. Note that {Ro[;o} is in general na
a Euclidean symmetry for p(;). One can recover the Euclidean character of the symme-

try group of G by embedding the Z module M* as a (3+d)-dimensional lattice I* in the

superspace:

K= I z. a* = k= I z, af (5.7)

where {a;} is a basis for V_ = VE® Vi, Vg being the position (sub)space and V  the i

S
ternal one. The integral coefficients in the two expressions of (5.7) are correspon-

dingly the same. The supercrystal is then defined by:
pg() = 1 e (5.8)
i
with r = (?E, ?I) € VS’ k = (EE’ i Yoy ¥ =% and ﬁI as in (5.5). Furthermore

L E

o(k) = 5(?) if k corresponds to ¥ as in (5.7). (5.9)
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The symmetry of Pg is the Fuclidean one and expressed by the condition:

Bl Fye 8 B =0 00, ) 5 (5.10)
gE € E(3) and 8y € E(d).
Note that writing gg = 8 using (5.8) and (5.9) the condition (5.10) is equivalent
with the previous one (5.6) formulated in terms of Fourier coefficients. As (by con-
struction) Pg has lattice symmetry the symmetry group G of Pg (and thus of p also) is
a (3+d)-dimensional space group. This group has additional properties because of the
special rdle played in Vs by the positional subspace v, = Vg Accordingly G is called

E
a (3,d)-dimensional superspace group 12).
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6. Application

The main results of the extension of crystal definition and of crystal symmetry given
in the previous section can be formulated as follows:

(i)

A full classification of all symmetries of commensurate as well as incommensurate
crystal phases is possible,

(ii)

The symmetry of a crystal having n positional dimensions and d internal dimensions is
a (n+d)-dimensional space group having additional properties and which is therefore
called an (n,d)-dimensional superspace group.

(iii)

There is a finite number of inequivalent symmetry groups of given dimensions.

Without going into details let us call equivalent two superspace groups such that:

- They have the same (n,d)-dimension.

- There is a crystal structure having these two superspace groups as symmetry group.
The usual concepts appearing in the Euclidean crystallography allows a natural gene-
ralization in the superspace formulation. So in particular one also gets Bravais class
es for the classification of (n,d) dimensional lattices L. These classes have been de
termined for n and d up to 3. Their number for n'= 3 is indicated on the following ta

(see also ref. 14):

Number of inequivalent Bravais classes

dimension (n,d) (3,0) (3.1) (3,2) (3,3)

total number 14 24 83 215

The (3,1)-dimensional superspace groups have been classified and a full list will be
published soon !%). Furthermore the superspace groups of the incommensurate crystal
phases exemplified in section 2 have been determined !3). We do not indicate these
here in order to avoid a lengthy explanation of the notation used. Instead of that a
glimpse of the geometrical and structural meaning of superspace symmetries will be gi-
ven in the following section: on the basis of a specific example attention is drawn
to the fact that this type of symmetry may be relevant in the case of a commensurate

crystal as well.
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7. Structural Properties and Superspace Symmetries

Four particular cases are reported here: one occuring in Na,C0, as exemplification of

a displacive modulated crystal; two involving composite crystals (TTFy)I and ng_é

5-x
AsFa for which the basic characteristics have been presented in section 2 and finally
an example of a not incommensurate phase where a case of so called "diffraction enhance—

ment of symmetry" is analysed in terms of superspace symmetries.

(i) Displacive modulated crystal: Y—N32003

In the y-phase of NaZCO (see fig la) the general form of the Fourier wave vector is:

3

»= y T Ty 44
k z,@ *zzb +zyc* 4 2.q {7.1)

. >, 5 £¥; . . W A . -
with a*, b*, c* spanning the conventional monoclinie unit cell of the basic structure,

E{ the modulation wave vector and z integer coefficients. Accordingly M* =

[ s Zl.
Z * and the internal dimension is d = |. Furthermore systematic extinctions in the

x-ray diffraction pattern are observed 5) for:
{(h,0,1,m),m odd, or in the notation (7.1) for (zl,O,zyzt.)*and z, odd.(7.2)

The symmetry of the basic structure is G0 = C2/m, with unique axis ﬁ In this setting

the modulation wave vector (in the mirror plane) is:
-»
q = (@,0,7), .3

with a,y real coefficients (and temperature dependent). The polarization of the dis-
. i E 3 .o
placive modulation waves 1is transverse, along the unique axis b.

The superspace symmetry group is (3,l)-dimensional, and contains as element 5y 16y;
Lo
g = (Rlv} = {{ 1, I (00013 (7.4)

vhere the transformation matrices refer to a basis reciprocal to the one adopted in
(7.1) for describing the Fourier spectrum. According to eq. (5.6) one gets from the
symetry (7.4) the observed systematic extensions (7.2). Furthermore this same sym—

metry element is consistent with the transverse polarization of the medulation.

(ii) Composite crystals (TTF).I,  and Hg3_5AsF5_

As already mentioned in section 2,(TTF)715.x is a composite crystal (at room tempera—
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ture) invelving two incommensurate subsystems: the TTF-subsystem and the Iodine-sub-

system, with lattices A] and AZ, respectively. The superspace group of the basic struc
C2/m
T a®
tual structure can be obtained by considering in addition displacive modulation waves,

ture is (3,1)-dimensional and given by P (see ref. 13 for more details). The ac-
which have been determined in great detail in the structural investigation by Johnson
and Watson (ref. 10). There are two sets of modulation waves:

- one with lattice periodicity A, produced by the TTF subsystem on the iodine-subsyster

- one with periodicity h, due ta]the action of the iodine subsystem on the array of
TTF-molecules.

The remarquable fact is that all these modulation waves have the symmetry imposed by

the superspace group PC%-:, so that in this case basic structure and modulated one

have the same superspace symmetry.

In the case of Hg3‘6AsEéthere are three incommensurate subsystems (see section 2 and

fig. 5). Choosing as origin a conventional one on the basis of the AsF6 subsystem (spa-

ce group Gl = IAl/amd), representatives of the other two subsystems, say Hg(l) and

Hg(2), have position at:

0, = (x,4,4) and 0, = (0,y,0) (7.5)
respectively, where the coordinates are expressed in the tetragonal unit cell of G].
At low temperature ordering in the mercury chains occur such that:

2k -y + ) = 5o 7.6)

3-8

and this phenomenon is revealed by extinctions of the Bragg reflections at: (3-§, 3-¢,
0),, where the lattice A? of the A5F6 subsystem has been used as reference system. The
same extinctions and the same structural relations among the three subsystems are re-
quired by (3,1)-dimensional superspace group symmetries. These symmetries are mirrors
mapping mercury subsystems onto each other associated with relative shifts of these
subsystems. Therefore these are not Euclidean 3-dimensional symmetries for the compo-
site crystal. This shows the relevance of the approach proposed. Again interaction
among the subsystems gives rise te additional displacive modulation which in terms of
crystallographic symmetries requires an additional internal dimension leading to a

(3,2)-dimensional space group. (see ref. 13 for more details).

(iii) piffraction enhancement of symmetry

Consider a 2-dimensional crystal with atoms arranged according to a space group sym—

metry Go = p3.As indicated in fig. 8 there are three inequivalent types of atoms, whic
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in the unit cell have location:

1 2

Py at (x,y), (F,%-y) and (y-%,%)

Fig. 8: Example of 2-dim.crystal showing

diffraction enhancement of symmetry

with among the generators:

2 1 1 2
P oat (3, 30, P, at (g, g) and

(7.7)

for x = and y = 0 .

1
3

As pointed out by T. Matsumoto !7) such
a crystal structure gives rise to an en-—
hancement of diffraction symmetry in the
sense that its diffraction pattern has

point group symmetry K,. = 6mm, whereas

the point group of thed;tru:ture is

KO = 3. Let us label the Bragg reflec-
tions by (hk), in a basis of the reci-
procal lattice of p3, and consider the
reflections (1,1), and (]_,2)* as gener-—
rators of main reflections and the ref-
lections at (1,0), and (0,1), as satel-
lite reflections. One can then apply the
superspace approach by adding to these
latter a component in a 2-dimensional
internal space, One then finds for the
structure indicated above a superspace

group
p3ml

G=P
p3ml

2.1 1
g, = 103,3)](0,0,5,3)} and g, = {(m,m}|(0,0,0,2}

implying a point group K = 3m and thus a Laue point group symmetry 6mm. In this exam—

. 1 . :
ple the "accidental" value x = - and y = 0 for the coordinates of atoms of type P3 is

3

connected with the presence of superspace symmetries, which would not be present for

more general values of x and y. Note that in this example these 'non-Euclidean" sym-—

metries appear even though the crystal has a space group symmetry.
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