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0. Introduction

Let E” be an n-dimensional Euclidean space. An n-dimensional
crystallographic group can be defined as the group of rigid motions
of E" fixing an n-dimensional “crystal structure". It is called a
space group, a partially periodic crystallographic group, or a
crystallographic point group if it contains just n, r with O<r<n,
or no linearly independent translations, respectively.

The structure of partially periodic crystallographic groups is
somewhat different from the well-known structure of space groups.
First of all, the Tinear constituent groups of partially periodic groups
do not necessarily act faithfully on the translation subgroups. Therefore,
Bieberbach's method of assigning an arithmetic crystal class i.e. a
conjugate class (= Z-class) of finite subgroups of GL{n,Z) to each
space group must be generalized, which implicitly has already been
done by some authors, e.g. in [9].

Moreover, unlike the space groups, partially periodic groups can
be isomorphic without being affinely equivalent. As in the case of
space groups, from a crystallographic point of view, affine equivalence
is the more natural equivalence relation. The question of which equi-
valence relation of partially periodic crystallographic groups can play
the role that Bieberbach's arithmetic equivalence did in the case of
space groups, apparently has not been studied systematically. The
classifications occurring in the literature appear rather unnatural
from this point of view. In fact, in some cases different class numbers
have been given without explanation, e.g. in [3].
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Using Maschke's theorem, it will be shown in this paper that every
n-dimensional crystallographic group with exactly r linearly independent
translations can be represented as an extension of Z" by a finite group
P<GL(r,Z) xGL(n-r,Z) and vice versa. Two finite subgroups of
GL(r,Z) xGL{n=r,Z) are called Z x Q-equivalent if they are conjugate in
GL(r,Z) xGL(n-r,Q). This equivalence relation reduces to Z-equivalence
in the case of space groups (r=n) and to Q-equivalence (= "geometric
equivalence" {[8])) in the case of crystallographic point groups (r=0).
The Z x Q-classes turn out to be an adequate generalization of Bieberbach's
arithmetic crystal classes. They can be determined by an aigorithm
proposed in [6].

The first part of Zassenhaus' space group algorithm [18] can be
applied to determine the, again finitely many, non-equivalent extensions
of Z" by a finite group P<GL(r,Z)x GL{(n-r,Z). The affinely equivalent
extensions can be identified by the second part of Zassenhaus' algorithm
if the (finitely generated) Z-normalizer used there is replaced by the

factor group of the normalizer N P) modulo the centralizer

GL(r ,Z) % GL(n—r,Q)(

€l x GL(n_r'Q)(P) which is again finitely generated.

By a modification of the developed algorithm crystallographic
equivalence instead of affine equivalence can also be treated, and thus
the enantiomorphic pairs of crystallographic groups can be determined.

A further modification which is not treated in this paper allows the
determination of colour groups ([13]1).

The algorithm was implemented on a computer, and all crystallographic
groups of dimension n<3 were calculated at the "Rechenzentrum der RWTH
Aachen".

1 have tried to use as little mathematical background as possible, so
that the paper hopefully can be read also by crystallographers with some
basic mathematical knowledge.

I like to thank Professor J. Neubiiser for introducing me to the field
of mathematical crystallography, for valuable advice during my investigations
and for reading the different drafts of this paper and supplying helpful
comments and criticism. Moreover, I owe special thanks to Dr. W. Plesken
for fruitful discussions.
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1. Definitions and Basic Properties of Crystallographic Groups

Throughout this paper lTet A" be a fixed affine space®, i.e.

A is a triple (4,V,~)

where
A is a set (of points),
v is an n-dimensional vector space over the field of
real numbers R,

and
+:Ax4 > Vis a function assigning to each couple
{a,b) €A x4 of points a vector abeV

such that

- for each a€4 and each x€V there is exactly one
beA such that ab=u,
—_ —_—

- ab+be =ae for all a,b,e€A4.

An affine mapping is a bijective function o :A—+4 such that

- b =cd implies ala)a(p) = ale) a(d) for all
wbedes o

- the function g, ¢ T defined by
wﬂ(ﬁ) = ala) a(b) for all g,b€4 is a linear
mapping of V, called the linear constituent of a.

itz 9, is the identity id, then o is called a transiation. The
translations form a normal subgroup T of the affine group, i.e. the
group of all affine mappings.

*) The reader who is not familiar with affine spaces may consult e.g. [11].
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For all o,a€4 and all affine mappings o

oa(a) = ca (o) + ale) ala) = oa (o) +o (0a).

Thus choosing anorigin 0€4, we can describe o by 0, and a vector

t,:=0a(0), which is called its translation vector. If a is a

translation, its translation vector ta is independent of the choice

of the origin o, and thus there is a natural 1-l-correspondence between

™ and V. The translation corresponding to a vector €V is denoted by

Tt.
The multiplication of affine mappings o and g is described by

(1) tuq * Ogag(@ @) = t5 + 0p(5,) + @go 0, (0d),
which shows that the function mapping o onto its linear constituent ®,

is a homomorphism.

Now let v be provided with a fixed positive definite scalar product
®:vxV-R. This induces a metric ~:4 xA4->R assigning to each couple
(a,b) €4 x4 of points their distance

ab:=labl := J¢(&‘+, E‘E).

We call E™ := (A", ) an Fuclidean space. Throughout this paper E” shall
be fixed.

An affine mapping « is called a rigid motion of E" if it preserves
the distance of points, i.e.

ab = ala)a(b) for all g,beA,

The Tinear constituent @, of a rigid motion a is an orthogonal mapping,
i.e. it preserves the scalar product

Oz, y) = @(rpa(:c), wu(y)) for all z,y€ V.

The rigid motions of E™ form a group 5" and the orthogonal mappings of ¥
form the orthogonal group 0".

An m-dimensional (point) lattice in E" is a set L of points such that
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the corresponding set of vectors
Li={sa |acT},

where ¢ is any fixed element in L, forms an m-dimensional vector lattice,
i.e. L is the set

L {zl'l1 +.‘.+zm-1m | ZiEZ}

of all integral linear combinations of m linearly independent vectors

Zl,...,lm in V.

A set (o,bl,...,bm) of m+1 points in 7 is called a coordinate system
of L if the corresponding vectors ﬁl,...,ﬁm form a fattice basie of L,
i.e. L is generated by (the linearly independent vectors) oB. ,...,db .

Since by definition 1 is a finitely generated free abelian group, each
subgroup & of L is again a vector lattice of dimension sgm and the
corresponding set of points

%, :={a€Lloacnl
is an m-dimensional point lattice for every o€L. *)

The concept of a "periodical system" can be described in mathematical
terms as follows. Let

il

be a function assigning a property (e.g. a colour) f(a)
to each point « € A. By L(f) we denote the group of all vectors €V whose
corresponding translations T, leave f invariant, i.e.

Bl s ey f(Tﬁ(a)) = fla) for all g€ A}.
The group of all rigid motions fixing s

5(F) :={a€ 8| flafa)) = fla) for all a€a}

*) If s=m, f or L is often called a centering of ﬂ_d'o or M, respectively.



is called the aypametvy growp of . 1f L(F) is an r-dimensional vector
lattice and 5(f) even fixes a function #':4~F' such that #(7") is a
lattice of dimension n, then 7 is called an (n,r)--eyastal steucture,
and its symmetry group 5(f) is called a (ecrystallooraphic) (n,r)-geoup
or, in brief, a crystallographic group of E". We call it space group,
partially pericdic group, OF point group if n=r, O<r<n, or r=0,
respectively. Since by definition every crystallographic group 5(f)
fixes an (n,n)-crystal structure 7":4~F' as well, g(f) is a subgroup
of the space group S(f'). On the other hand, we shall obtain as an
immediate consequence of Proposition 1.3 that every subgroup ¢ of a
space group S(f') is crystallographic, i.e. there exists an (n,r)-
crystal structure f:4-F such that u=3(F).

Let £ be an (n,r)-crystal structure and ¢ :=5(F) its symmetry
group. The group

P(C) := {0, | a€C)

is called the linear constituent of C.

The translations of ¢ form a normal subgroup 7(C), called the
translation subgroup of C. It is canonically isomorphic to the translation

lattice
L(¢) :={t€V| TtET(C‘)} =L(f)

of ¢C.
From the multiplication rule (1) we obtain the conjungation formula

-1

Qo T, o0t for all a€C, T,€7(C).

=T
t Lﬂu(t) t

As 1(c) is normal in ¢, T must be an element of T(c) and therefore

®, ()

q;u(-g)e.b(c) for all t€L(C), (pﬂEP((,‘),
This means that the linear constituent P(C) of ¢ acts on the translation

lattice L(C) and thus L(C) becomes a Z-free ZP(C)-module, i.e. a ZP(C)-
lattice.
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Since the {n,r)-group ¢ is a subgroup of a space group ', its
translation lattice L(¢) is a sublattice of Z(C') and its linear
constituent P(C) is a subgroup of P(C'). Therefore P(C) acts on L{C")
and it must be finite as every subgroup of ¢" acting on an n-dimensional
vector lattice is finite ( see also [8]).

We prepare our first proposition by a definition and a Temma.

1.1 Definition. A point b€4 is called a point in general position with
respect to a group of rigid motions ¢ if a(b)=g(h) implies a=g for all
a,BEC. O

1.2 Lemma. Let ¢ be a group of rigid motions fixing an n-dimensional point
lattice Z. Then there exists a point in general position with respect to ¢
not contained in L.

Proof: A point €4 is in general position with respect to ¢ if and
only if v(b)=b implies y=1id for each yEC. Fixing an origin c€4 we can
describe the equation y(b) =5/ by the system of Tinear equations 5??53 =¢b.
For each v+ ¢d the set of solutions of this system of linear equations is
empty or forms a residue class of a proper subspace of V. The union of all
these residue classes and of the vector lattice L associated to T is still
properly contained in ¥ since ¢ is countable as an extension of its
countable translation subgroup and its finite linear constituent. a

1.3 Proposition. Let ¢ be a group of rigid motions of E" acting on an
n-dimensicnal point lattice. Then ¢ is a crystallographic group.

Proof: Let L' be an n-dimensional point lattice fixed by ¢ and L' its
associated vector lattice. The function f':4-{-1,0,1} defined by

-l if a€Ll’
GO RE s
0 if a%L’
is an (n,n)-crystal structure fixed by ¢. Let b€ 4 be a point in general
position with respect to the space group S{f’) such that b¢L’.

The orbit c(b) :

={a(b) la€C} of b and I’ are disjoint, for c€c(b)NTL'
would imply b=alc)Ea(l’

y=1' for a suitable w€C which is a contradiction.



Therefore the function ;:-{-1,0,1} defined by

-1 if o3
a) = 1 if aed(b)
0 elsewhere

is well defined. By the construction of f we obtain ¢<s5(f) <5(/") and
thus L(C) < L(f) < L(F') = L". Therefore f is an (n,r')-crystal structure
with r<r'<n. It remains to show that ¢ is the symmetry group :(f) of 7
and therefore L(f) =L’ and r=r'. So let € 5(f). From f(a(d))=£(p)=1,
i.e. a{b)ec(b), it follows that a€¢ for < 5(f'} and b is a point in
general position with respect to 5(f'}. o

1.4 Example. Let L’ be a "primitive cubic point lattice", i.e. the
corresponding vector lattice »'= {oala€L'}, o being a fixed point in I',
is generated by mutually orthogonal vectors 7, =o—a’1, Z, =u_a’2, 13=o_r}'3 of
the same length (forming anorthonormal basis of v¥). Then 7/ :4-{-1,0,1}
defined by

-1 if a€ !

0 if a§ L’

is an (3,3)-crystal structure because L(f')=1L".

It can easily be seen that for instance b€ A with ﬁ:il + /7 t2 +n-€E
is a point in general position with respect to 5(r'). Let a€ s’ be the
screw rotation about the 4-fold axis through o and a, with translation
vector ?.1. Starting from L we arrive at

a(b) with .o(x(b)=l1 T 12+/2_- by

-

a?(b) withouz(b)=2-ll+11-/f-lz-'n-i and

3!
o (b) with oo (p) =3 - L4l e, VT L,
in turn.

Using the vector lattice / generated by 4 - L, and the point lattices



L, i={a€ala (blagi}, i=0,1,2,3,
we define f:4-+{-1,0,1} by

-1 if g€’
1= i €L UL UL.UT
fla): 1 if a€L VI VI, VI,
0 otherwise.

Then £ is an (3,1)-crystal structure with L(f) =7 and S{f) is generated
by a. o

2. Matrix Representations of Crystallographic Groups

For the description of the announced algorithm in Chapter 5 we
introduce matrix representations of crystallographic groups for which
we use normal letters instead of italic ones.

2.1 Proposition. a) Let ¢ be a crystallographic (n,r)-group of E". Then

there exists a coordinate system (0.a,,...,a ) of E" such that with

respect to this coordinate system or the associated basis (171 =o?1,..., b, =o‘3l)
of ¥, respectively,

- the linear constituent P(¢) of ¢ is (faithfully) represented by

integral matrices of the form p€GL(r,Z) xGL(n-r,Z), i.e.

p' 0
p= \ p'€GL(r,Z), p"€GL(n-r,k),
0o p'/

- the translation lattice L(C) of ¢ is represented by integral
columns teZ", i.e.

- the elements of ¢ are represented by

oyl v ex”
(vp+ t,p)s 12(C)I Y Z
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their multiplication being defined by
(2) (@ # )7 (L SSg)e VS RFp 07 5, §7H)

Yo
(where p = (0 p") acts on Z" and R" as p' does, e.g. p - Yy i=p' -vq]

The vector system v : PV, fulfills the characteristic congruence

v _=v +p-v_mod Z",
pg P q
b) A set
c={wp+tm)1pep,tezﬁ
(3) P a finite subgroup of GL(r.Z)xGL(n-r,Z)

IPl-v €2, v _=v +p-v_mod Z° for all p,qEP
p p'a P q

is a group with respect to the multiplication {2) representing an
{n,r)-group.

Proof: a) Let ¢ be a subgroup of the space group ¢'. Then its Tlinear
constituent P{C) acts on the translation lattices L(¢) and L(C'}. Therefort
P(c) also acts on the vector space RL(¢) consisting of the real Tinear
combinations of the vectors of L(¢). Since P(¢) is an orthogonal group,
the orthogonal complement |RL(C‘)'L of Rr{C) is mapped onto itself and the
elements € P(¢) commute with the orthogonal projection 7 : V—»IRE(-C')L, i.e
n(w(x)) =p(n(x)) for all z€v. Therefore P(C) acts also on L* :=w(L(C")),
which is an (n-r)-dimensional Tattice in IR.L(L‘)'L as we shall show now.

The lattice L{¢') is a direct sum of the r-dimensional lattice
L:=RL{C) N L(C’) and an (n-r)-dimensional lattice ', say ([10, p. 100]).
Let (b;+1""’br:) be a basis of z’. Then b, :=m(b]) =bl+i, for suitable
liEL, i=r+1l,...,n, and thus br+1""’bn are linearly independent and
form a lattice basis of w(si') =L*.

With respect to a basis (bl,...,bn) of IV where (bl,...,br) and
(b, »--+»b,) are lattice bases of L(c) and r*, respectively, P(C) and L(¢]
are represented as stated in the proposition.



- 37 -

For the representation of ¢ we have to choose a suitable origin o.
For each yeP(C) let C‘.pec with linear constituent Oy =V, i.e.
{alp e P(C)} is a set of representatives of the cosets of 7(c¢) in c.
Then ¢ = [Ttuw | t€L(C), YEP(C)}. Let o' be any origin and

(0'sa .,ar;) the coordinate system with o’ai’= e With respect to

1’ :
this coordinate system the translation vector v!:=t' :=¢'a, (0') of
o, is represented by a vector VIIDE'RH’ p being the representation of

with respect to the basis (& .ab ). Thus ¢ is represented by elements

Loee
(vp+t,p), their multiplication rule (2) following immediately from the
corresponding multiplication rule (1). The characteristic congruence is
obvious. It remains to show that there is an origin o such that

vy -oaw(-j EIP(C)| - L(C). We show that the point o defined by

o= Bt~ B

xep(c) X

is suitable.

Summing up the characteristic congruence

UUZDXEuJ’i—d)(U);) mod L(c) for all y,x€P(C)

we obtain

z u! = |P(C)] - vl +u( 2 v'} mod L(C),
yealo Yk v T erie) X

i.e. |P(C)I - (y-2d) ZD’EL ), and thus

e(c)l - V" 12(C)I - ouw(o)
= |1P(C)I - (O_CJ" +o! uw(o 41(0')%(0”

= 1p(C)I - (-F?qu;w(o_'a)

NV+a

= |P(C)] - v! + (v ~id) ZU'EL

b) Because of the characteristic congruence, C forms a group with respect
to the multiplication (2). The finite group P fixes the positive definite
scalar product v, :R"xR" >R defined by



- 38 -

o (x.y) = xt(gg ptp) -y ( xt being the transpose matrix of x|
P

There exists a basis (bl,...,bn) of V such that ©_ is the representation
of the given scalar product ¢ of E" ([17, p. 153]), i.e. if x,yeR" are
the representations of x,y €V with respect to this basis, then

oleay) =0 (X¥).

Therefore, the group P represented by P with respect to (b1""’bn) is
orthogonal. As P acts on 2", P acts on L' :={z-b +...+2 b | 2, €1},
Since v_€ |P|'1 - I" for all peP, C acts on the n-dimensional vector
lattice (P71 . Z".

Let o be any origin and ¢ the group of rigid motions of E" represented
?{gc with resEE;t to the coordinate system (o,al,...,an) with
ca, =b1,...,o<ﬂ1=bn. Then ¢ acts on the point lattice corresponding to
IP|-1.L"and therefore ¢ is a crystallographic group by Proposition 1.3.
Since its translation lattice L(C) is generated by bl,...,br, C is an
(n,r)-group. o

2.2 Example. The symmetry group of the (3,l)-crystal structure f of
Example 1.4 can be represented by the matrix group

00 )
[1/41, 0-1 = {11741 +t, g
10
100
[1/2] +t, 0-10|]|, [3/41 +t, \ (t,e}
0 0-1

From now on, when speaking of a crystallographic group, we mean - if not

(=N N
[= Nl
I—‘(IDO
(= e

teZ

o O -
=X =]
oo

otherwise stated - a group of the form (3). Its linear constituent P is
denoted by P(C),its translation lattice Z" by L(C), and the corresponding
translation subgroup by T(C).
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3. Equivalence of Crystallographic Groups

We shall show in this chapter that affine equivalence of crystallographic
groups can be expressed by an equivalence relation of the associated linear
constituents,called Z x Q-equivalence, and a relation of the associated vector
systems.

3.1 Definition. Let C and C* be crystallographic groups of the form (3).

a) C and C* are called affinely equivalent if they are conjugate in the

affine group

A(nR) := {(t,x)|teR™, xEGL(n,R)}
where GL(n,R) is the group of all regular real nx n-matrices and
(t,x)€A(n,R) acts on R by means of

(t,x) - s:=t+x-s for seR",
i.e. C and C* are affinely equivalent if there exists a mapping
(t,x)€A(nR) such that C=(t,x)-C* (t,x)"!. (Here we have
identified (t,p)eC with ([§].p)eA(nR).)

b) C and C* are called erystiallographically equivalent if they are

—

conjugate under the proper affine group
A(n, R) := {(t,x) | teR™, Xx€GL(n,R), det x>0}.

c) C and C* are called translationally equivalent if they are
conjugate under the group of translations
T(n,R) :={(t,e) | tER"} (e being the identity matrix).

d) C and C* are said to be enantiomorphic if they are affinely but
not crystallographically equivalent. o

We shall not deal in detail with crystallographic equivalence,
although it can be treated in quite an analogous way as affine equivalence.
The interested reader is referred to [12], [13].

0f course conjugation by elements of a group induces an equivalence
relation and therefore translational, affine, and crystallographic
equivalence define a decomposition of the crystallographic groups into
classes of equivalent ones.
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We have introduced the above equivalence relations only for the matrix
representations of crystallographic groups, the analogues for groups of
rigid motions of E” being obvious.

Affine classes of crystallographic groups and of their representations
are obviously in l-l-correspondence. However, this is not true for single
groups because different choices of coordinate systems of E" may yield
different representations.

3.2 Theorem, Let C= [(vp+ t,p) | peP,t€Z} and ¢*:= {(v;*’rt*, p*) | p*e P*, txel
be (n,r)-groups. Then C and C* are

a) translationally equivalent, if and only if P=P* and for a suitable
ue Q*

(4) vpiv;+ (e-p)u mod Z° for all peP,

b) affinely (crystallographically) equivalent, if and only if there exist
x€6L(r,2) x GL(n-r,Q) (with det x>0) and u€ Q" such that

(5) xP*x~t = p and
V=X -k + (e-p)u mod Z* for all peP.
P x~1px

(Notice in particular that for P*=P the condition xP*x"1 =P means that x
P

lies in the normalizer NGL({,Z)XGL(n—r,Q)(P)')

a) follows from b) by specialization.
b) By definition, C and C* are affinely equivalent if and only if there
exists a matrix

2 X X0 u
X = € GL{n,R) and a vector u = er"
N o
21
such that (i,X) - C*- (1,5)"" =C. Since translations are transformed onto
translations, it follows that (G,X) - T(C*) - (i,X)" =T(C) and therefore
Xx-IF=1%, that is to say Xy, =0 and x'€GL(r,Z), and thus x"€GL{n-r,R).

Using the fact that P,P*<GL(r,Z) xGL(n-r,Z), it can be seen by direct
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computations that

and thus
v, +t.p) I p€ P,tel’} =
=(u,x) * {(v;* +t5,p*) | prEPH e} - (- _lu,x_l) =
={{u+x - vEex o t* —xp*xtou, xprxly | prepr, trert) =

P Ny’ —— o

t p p

={(x- v;-lpx+(e'p) “u+t,p) | peExP* x-l’ tex -7}
Now the stated formulas (5) follow immediately. Moreover, we can assume

without Toss of generality that x" and u are rational instead of real
because they are solutions of the systems of rational linear equations

., [ I [} ;1 p*'U i = p.O
X" . prt=p" - x" for p¥ (0 ot €P* and suitable p= | O ) €P

and

-p) U=y -x. vk +t_ for peP and suitable t_€Z%,
(e D) P x"lpx P P P

respectively. Since Q™ *7) 45 3 dense subset of R{™TFI X (M) 4pg

the determinant is a continuous function, there exists a solution

x" € GL{n-r,Q) if there is one in GL(n-r,R) (see [10,p.200]).

The converse is true by the above computation. The same proof holds for
crystallographic instead of affine equivalence if x is required to have a
positive determinant, o
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3.3 Corollary and Definition. Let C and C* be affinely equivalent (n,r)-
groups with linear constituents P,P*<GL(r,Z)xGL(n-r,Z). Then P and P*
are conjugate in GL(r,Z)xGL(n-r,Q), i.e.

xP*x"L =P for a suitable x€6L(r,Z) x GL(n-r,Q).
Such matrix groups P and P* are called Z x Q-equivalent. o

For r=o0 the ZxQ-equivalence reduces to geometrical and for r=n to
arithmetical equivalence (see e.g. [14]). It is the natural generalization
of these concepts, while the analogously defined @ x Q-equivalence, which is
often used in the literature (e.g. in [3]), does not embrace the concept
of arithmetical equivalence.

4. The Structure of Crystallographic Groups.

We show in this chapter that each (n,r)-group is a subdirect product
of an r-dimensional space group and an (n-r}-dimensional finite unimodular
group, and that at the same time it is an extension of its translation
lattice Z" by a subdirect product of finite subgroups of GL(r,Z) and
GL(n-r,Z), respectively. Moreover, each such extension represents an
(n,r)-group. Therefore it is possible to construct the partially periodic
groups (r<n) either as subdirect products of space groups and finite
unimodular groups or as extensions. The first method was used by several
authors (e.g. [9]), but it seems to become rather uncomfortable for r>2
since then the equivalence problem is probably hard to solve. We prefer
the construction by sclving the extension problem and propose an algorithm

for it in the next chapter, which is a natural generalization of
Zassenhaus' space group algorithm.

4.1 Theorem. Let C={(vp-+t,p)l pEP,tEL"} be an (n,r)-group.
a) The functions mapping (vp+t,p)€C with p= %g.) €P onto (vp+t,p')
and onto p" are homomorphisms onto an (r,r)-group C' and a group

P"<GL(n-r,Z), respectively. The intersection of the kernels of these
homomorphisms is the identity {(0,e}}, i.e. € is a subdirect product
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of the space group C' and the finite unimodular group P".

b) The functions mapping p= | P O,, €P onto p' and p", respectively, are
0p g

homomorphisms, the intersection of their kernels being the identity {e},
i.e. P is a subdirect product of finite unimodular groups P'<GL(r,Z)
and P" <GL(n-r,Z). Thus C is an extension of L(C)=Z" by the subdirect
product P=P(C).

Let P' and P" be finite subgroups of GL(r,Z) and G6L(n-r,Z), respectively,
and let C' be a space group of R® with linear constituent P'.

a*) Every subdirect product C of C' and P" is canonically isomorphic to an
(n,r)-group.

b*) Every extension of Z* by a subdirect product P of P' and P" is isomorphic
to an (n,r)-group.

Proof: a) and b) are trivial consequences of 2.1 b,

a*) Let ' : C>C' and 1" : C>P" be epimorphisms with kern w' Nnkern 1"=1.
We define the action of an element ¢ of C on R"=R"@R""¥ by
coxi=m'(c) - x'+uw"(c) - x" for x=x'+x", x'€R", x"€R"F,

Then C acts on R™ as an (n,r)-group by 2.1 b.

b*) Because of Proposition 2.1 b we have only to show that any extension of
Z" by P can be described by a vector system v:P-|P|=} - Z%. An elementary
proof of this fact can be found in [18]. Moreover, it follows immediately
from cohomology theory (see e.g. [1]). o

We do not need this structure theorem for the determination of all
(n,r)-groups with the announced Algorithm 5.1 because we shall only deal
with vector systems and can directly apply Proposition 2.1 b.

4.2 Example. The (3,1)-group of Example 2.2 is a subdirect product of the
(1,1)-group C' = ((1/4,9)) (Hermann-Maughin-symbol:1) and the unimodular

group P" = <<? '(l)>> (Hermann-Maughin-symbol:4). o
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5. An Algorithm for the Determination of the Affine Classes of
Crystallographic Groups.

Theorem 3.2 and Proposition 2.1 b enable us to formulate an algorithm
for the determination of representatives for the affine classes of (n,r)-
groups.

5.1 Algorithm.

1) Calculate a representative set P of the finite subgroups P of
GL(r,Z) xGL(n-r,Z) with respect to Z x §-equivalence.

For each group PP

2) determine a set ¥ of vector systems v: P> IPI”! - Z¥ which describes a
representative set of the (n,r)-groups with linear constituent P with
respect to translational equivalence;

3) identify those vector systems v€ V which define affinely equivalent
(n,r)-groups.

We describe the three steps more precisely.

ad 1) By a theorem of Jordan and Minkowski there are only finitely many
Z-classes of finite subgroups of GL(m,Z) for each fixed natural
number m ([10,p.559]). Representative sets for these classes are well-
known for mg 4 ([5]1). From the finite number of those representatives
P'" <GL(r,Z) and P" <GL{n-r,Z) only finitely many subdirect products

1 "no_ plO p‘ €p' " . .
P <P xP »{(é ﬁ) p" €p can be derived and in [6] an algorithm
is given for the calculation of representatives of the "Z xZ-classes”
of these subdirect products. By an obvious modification of this
algorithm also Z x §-equivalence can be treated.

ad 2) The (finite) set of vector systems ¥ can be determined by the first
part of Zassenhaus' algorithm as follows.
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Let E= {p1 ,...,pk} be a set of matrices generating the group P and

rl:rl(pl,...,pk):e,...,rm=rm(pl,...,pk)=e

a system of defining relations of P. If we know vpl seenaVy
k

» we can
determine L {up to £7) for each matrix pEP by expressing p as a word

in the generators PyseesBy and then recursively applying the
characteristic congruence in (3) to this word. It can be shown ([18]) that

V. 5...,v  define a vector system v if and only if for the vectors

Py Py
\irl,...,vrm derived in this way, the congruences

ve. =0 mod Z° for i=1,...,m
1

hold. This system of r -m simultaneous congruences can be combined to
R-V=0mod Z"='"
%4

where V: €R"’

: and
Py

R=(a,

lj),a__ezr"‘ for i=1,...,mand j=1,...,k is defined by

a,. v for i=1,...,m.

RE lr-mxr-k

The matrix can be transformed to diagonal form

Z-R-S= , Z€GL(r-mZ), SEGL{r-k,Z)
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by means of row operations (multiplying R by Z from the left) and
column operations (multiplying R by S from the right).

Now it can be shown that

e /d

1y
Vi={V:=5S- e /d, [0<ei<di, e €Z for 1= 1500058}
0
0
Vpl
is a set of vectors V= 5 defining a representative
v,
Py

set of the classes of translationally equivalent (n,r)-groups with
linear constituent P ([18], [4]).

By a modification of the second.part of Zassenhaus' algorithm the
vector systems of affinely equivalent groups are identified. By

Theorem 3.2 on the characterization of affine equivalence, we have
to determine the orbits of V with respect to the operation of the
normalizer NZXQ(P):I N

P), where an element x&N_  (P]

GL(r,Z]XGL(n—-r,Q)( )]

acts on the set of vector systems by means of

thus inducing a permutation on V.

The centralizer C”Q(P) :=C
vector systems because

- =e.y = =(¢0
=¥ g ol for x (0 x.)GCIXQ(P).

1><GL{n_r,‘m(P) acts trivially on the

px

Therefore we have only to determine the orbits with respect to the
factor group Nsz(P)/c
of Siegel [16].

]XQ(P) which is finitely generated by a theorem



Since v = (v¥)Y for x,y€ Nsz(P)’ it is sufficient to determine the
orbits induced by the action of a finite set [x1 ,...,xt} which together
with cle(P) generates the normalizer NZXQ(P). The set {x;,...,x.} can
be found as the union of a generating set of CzXl(P) 1= CGL{x,z)n(P)‘
which is known for r<4, with a set of representatives of the cosets
of CZXQ(P) in Nsz(P)' This can be determined by checking of which
automorphisms of P are induced by matrices in GL(r,Z) x GL(n-r,Q)

(see also [7], [15]).
x'0

The orbits under an element x = (0 "

) ENI,XQ(P) are calculated in
analogy to [18] and [4] as follows:

Let x'lpix:wi be a representation of x'lpix as a word W, in the
generators p, seePy of P. By recursively applying the characteristic

congruence to VW. we can express v as
i xklpix
e rxr
v = Ib .-V b,.€Z for i= Lyveeske
x_]'pix iS17i) Py Tij . ¥

If we define B=(x' - b, .)elr'er'k, we get

ij
el/d1
X .
v v <
B Py Py }d
Vo= =B : =B-S e/d, | .
x y 0
v v :
Py Py :
0
£
e1/d1
vgl :
The vectors V* and y*= ! =5 . e"s"/ds € define
v 0
Py ‘
0

translationally equivalent groups if and only if
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s
*
"
(141)*) i.e
elld1 ef/d1 z.1
B-S- |eysd | -5- |etd | =5- |z,
0 0 x
0 0 *
or
e /d, et/d, z.1
i ! ; |
S +B-S eslds - e";,’dS =z
0 *
0 0 *

This can be checked for every pair V, V€V,

*)

This characterization of translational equivalence yields a method

for determining the affine class of an (n,r)-group C by comparison

with a list of the (n,r)-groups obtained from the generalized

Zassenhaus algorithm.

1) Find the £ X @-class of P(C) and transform C into C* by conjungation
with a matrix x€GL(r,&) XGL(n-r,0) such that P(C*) =x - P(C) » x~1

appears in the list,

Find the translation class of C* by comparing its vector system

with those of the (n,r)-groups in the list whose linear constituent

is P(C*). This can be achieved using the above condition.

2

—
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100
5.2 Example. The linear constituent P= (p) = <(0 0-1)> of the
010

examples 2.2 and 4.2 has a defining relation

4
ry=ry(p)=p
and thus
v =V
I P4
= \arp+p-\4-rp3

=y +D- +p-

votpiv, tp ¥ g)

= +n- . +n-.

Vo Py pe(v, +pev )

=(e+p+p2epd)-v

=(1+1+1+1)~vp

Therefore R=(4) and R has already diagonal form and thus S=2Z=(1).
We get

v:={[0], [1/4], [2/4], [3/41}

and there are four classes of translaticnally equivalent (3,1)-groups
with linear constituent P.

-100
As Cz%l(P) = (O 1 0) and the only automorphism p —»p3 of P

001
0
1),
0
0\ /100
0], {o01}]).
1y \010

-1
we have Nsz(P) = <CIXQ(P), (g

Since x = (

1
is induced by the matrix (0

-0 0o

0

==
—o o

100
gé[l) Eszl,we get



= B =

N g =v_, i.e. b11 = (1)

and therefore B=(-1) - (1)=(-1)=5"'-B-5.

As
sl.B-S-[0]-10)=1(0],
s B S [1/4] - [3/4) = [-1],
sTl.g-s-[1/2] - [1/2] = [-1],
g =~ §s T TR % Bl

the orbits of V under x are {{01}, {[1/4], [3/4]}, and {[1/2]}.

100
For x = 001 we get
010

v = = . .

=v_+1-(v

s L 1-vp)

& 3 vp 4 i.e, b11 =(3),

and therefore B= (1)« (3)=(3)=5""-B-S.

As
s7.B-5-[0]-1(0]=1(0],
sTh.B-S.[1/4) - [3/4] = [0,
st.B-s-[1/2]-[1/21 =11,
sTh.B.s-.[3/8]-[1/4)=[2],

the orbits of V under x are again {[01}, {[1/41, [3/41}, and {[1/2]} and
there are three classes of affinely equivalent (3,1)-groups with linear
constituent P. o
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6. Closing Remarks

As crystallographic groups are extensions of their translation sub-
groups by their Tinear constituents, they can also be described by means
of cohomology theory (see e.g. [1], [2]).

The method for the construction of the crystallographic groups proposed
in this paper can be generalized to determine crystallographic colour groups
(see e.g. [8]) which we define as follows:

6.1 Definition: Let f:4~F be an (n,r)-crystal structure and I a group
of permutations of "the colours" F. The group

#a(f) 1= {{m,0) Lwem, n€ B, fla(a)) =u(f(a)) for all a€a}

is called the colour group of f with respect to II. It is called erystallographic
if F is finite and if its geometrical constituent

C(Flf)) = {e€ 8" | (N,a) €Fp(f) for a suitable ne N}
is a crystallographic group. o

A crystallographic colour group G=FH(_.“) is an extension of the

tranalation lattice
L(G) = L(F)
by the iinear colour constituent
PF(6) = {(my0,) | (ma)€6 for a suitable a€ Y
which itself is a subdirect product of the colour constituent
§(¢) :={n€n| (n,a) €6 for a suitable a€ 8"}
and the linear constituent P(¢(¢)) of the geometrical constituent ¢(G) of G.

Defining equivalence of crystallographic colour groups in a natural
way, we can construct the colour groups by the methods used for the
determination of crystallographic groups. (The interested reader is
referred to [13].)
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