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0. Introduction

Let E” be an n-dimensional Euclidean space. An n-dimensional
crystallographic group can be defined as the group of rigid motions
of E" fixing an n-dimensional “crystal structure". It is called a
space group, a partially periodic crystallographic group, or a
crystallographic point group if it contains just n, r with O<r<n,
or no linearly independent translations, respectively.

The structure of partially periodic crystallographic groups is
somewhat different from the well-known structure of space groups.
First of all, the Tinear constituent groups of partially periodic groups
do not necessarily act faithfully on the translation subgroups. Therefore,
Bieberbach's method of assigning an arithmetic crystal class i.e. a
conjugate class (= Z-class) of finite subgroups of GL{n,Z) to each
space group must be generalized, which implicitly has already been
done by some authors, e.g. in [9].

Moreover, unlike the space groups, partially periodic groups can
be isomorphic without being affinely equivalent. As in the case of
space groups, from a crystallographic point of view, affine equivalence
is the more natural equivalence relation. The question of which equi-
valence relation of partially periodic crystallographic groups can play
the role that Bieberbach's arithmetic equivalence did in the case of
space groups, apparently has not been studied systematically. The
classifications occurring in the literature appear rather unnatural
from this point of view. In fact, in some cases different class numbers
have been given without explanation, e.g. in [3].
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Using Maschke's theorem, it will be shown in this paper that every
n-dimensional crystallographic group with exactly r linearly independent
translations can be represented as an extension of Z" by a finite group
P<GL(r,Z) xGL(n-r,Z) and vice versa. Two finite subgroups of
GL(r,Z) xGL{n=r,Z) are called Z x Q-equivalent if they are conjugate in
GL(r,Z) xGL(n-r,Q). This equivalence relation reduces to Z-equivalence
in the case of space groups (r=n) and to Q-equivalence (= "geometric
equivalence" {[8])) in the case of crystallographic point groups (r=0).
The Z x Q-classes turn out to be an adequate generalization of Bieberbach's
arithmetic crystal classes. They can be determined by an aigorithm
proposed in [6].

The first part of Zassenhaus' space group algorithm [18] can be
applied to determine the, again finitely many, non-equivalent extensions
of Z" by a finite group P<GL(r,Z)x GL{(n-r,Z). The affinely equivalent
extensions can be identified by the second part of Zassenhaus' algorithm
if the (finitely generated) Z-normalizer used there is replaced by the

factor group of the normalizer N P) modulo the centralizer

GL(r ,Z) % GL(n—r,Q)(

€l x GL(n_r'Q)(P) which is again finitely generated.

By a modification of the developed algorithm crystallographic
equivalence instead of affine equivalence can also be treated, and thus
the enantiomorphic pairs of crystallographic groups can be determined.

A further modification which is not treated in this paper allows the
determination of colour groups ([13]1).

The algorithm was implemented on a computer, and all crystallographic
groups of dimension n<3 were calculated at the "Rechenzentrum der RWTH
Aachen".

1 have tried to use as little mathematical background as possible, so
that the paper hopefully can be read also by crystallographers with some
basic mathematical knowledge.

I like to thank Professor J. Neubiiser for introducing me to the field
of mathematical crystallography, for valuable advice during my investigations
and for reading the different drafts of this paper and supplying helpful
comments and criticism. Moreover, I owe special thanks to Dr. W. Plesken
for fruitful discussions.
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1. Definitions and Basic Properties of Crystallographic Groups

Throughout this paper lTet A" be a fixed affine space®, i.e.

A is a triple (4,V,~)

where
A is a set (of points),
v is an n-dimensional vector space over the field of
real numbers R,

and
+:Ax4 > Vis a function assigning to each couple
{a,b) €A x4 of points a vector abeV

such that

- for each a€4 and each x€V there is exactly one
beA such that ab=u,
—_ —_—

- ab+be =ae for all a,b,e€A4.

An affine mapping is a bijective function o :A—+4 such that

- b =cd implies ala)a(p) = ale) a(d) for all
wbedes o

- the function g, ¢ T defined by
wﬂ(ﬁ) = ala) a(b) for all g,b€4 is a linear
mapping of V, called the linear constituent of a.

itz 9, is the identity id, then o is called a transiation. The
translations form a normal subgroup T of the affine group, i.e. the
group of all affine mappings.

*) The reader who is not familiar with affine spaces may consult e.g. [11].











































































