WEAK EQUIVALENCE OF TRREDUCTBLE REPRESENTATIONS OF LITTLE SPACE GROUPS

Louis Michel

I. H. E. S.

91440 Bures sur Yvette, France

Jan Mozrzymas Institute of Theoretical Physics, University of Wrocław ul.Cybulskiego 36, 50-205 Wrocław, Poland

In the quantum mechanical study of a physical system S possessing a symmetry group G, one has a unitary representation of G in the Hilbert space H of state vectors of S, i.e. a homomorphism f: $G \to U(H)$ of G into the unitary group of H. Generally, f has a non-trivial kernel Ker f , so its image Im f = $= \{f(g) ; g \in G\} = f(G)$ is isomorphic to the quotient group G/Kerf. One says that G does not act effectively in H and that it acts on the state vectors only through the image f(G) . So the physical phenomena of S depend only on f(G). The memory of the kernel Ker f is lost.

Let us note that if the dimension of H is finite then f(G)is just the set of matrices which appear in the representation f

Two n-dimensional images $f_1(G_1)$ and $f_2(G_2)$ are called equivalent (we write $f_1(G_1) \sim f_2(G_2)$) if they are conjugated subgroups in the group $GL(n, \mathfrak{c})$ of non-singular $n \times n$ matrices. In other words, $f_1(G_1) \sim f_2(G_2)$ if and only if there exists a matrix

 $W \in GL(n,\mathbb{C})$ such that $Wr_1(G_1)W^{-1} = r_2(G_2)$, i.e. the whole image $r_1(G_1)$ is transformed onto the whole image $r_2(G_2)$. Let us note that this equivalence condition is weaker than the usual equivalence of representations when $G_1 = G_2 = G$, namely the usual equivalence (denoted by \approx) means that $Wr_1(g)W^{-1} = r_2(g)$ for every $g \in G$. That is why the relation \sim will be called a weak equivalence.

The weak equivalence relation \sim was proposed in [1], [2]. The equivalent images of different space group representations have the same invariants, [1]. Such invariants are computed, for example, in Landau's theory of phase transitions.

It is natural to classify the lattice-vibration representations by the weak equivalence, too, [3]. In this context, the equivalence \sim is also motivated by the fact that the polarisation vectors can be related to the eigenvalues of matrices appearing in the corresponding lattice-vibration representation of the group G_k of a wave vector k (little group of k), [4].

All images $D_k(G_k)$ of allowed irreducible representations D_k of G_k groups (high-symmetry wave vectors k) are listed and discussed in [5],[6]. The images $D_k(G_k)$ have the following properties:

- 1. $D_k(G_k) = T_k^{(m)}B_k$, where $T_k^{(m)} = \left\{e^{-ikt}; t \in T\right\}$, T is the translation subgroup of G_k , m denotes the order of $T_k^{(m)}(T_k^{(m)})$ is a cyclic group if k is a high-symmetry wave vector) and B_k is a group of $n \times n$ matrices $(n = \dim D_k)$
- 2. For a few thousands of single-valued allowed irreducible representations of $G_{\bf k}$ (high-symmetry wave vectors) there are only 25 weak equivalence classes of the $B_{\bf k}$ groups
- 3. Every B_k is either a unitary reflection group or is a proper subgroup of such group (unitary reflection groups are defined and discussed, for example, in [7],[8],[9]).

In the context of property 3 one can note that the lattice vib-

ration representation L_k of G_k can be written in the form $L_k = F_k \otimes P_k$ where \otimes denotes the tensor product of group representations, P_k is the vector representation of the point group of G_k , and F_k (defined by the formula (9.16) in [10]) is a subgroup of the unitary reflection group G(m,p,n), [8],[9], when m denotes the order of $T_k^{(m)}$, and n is the number of atoms in the Wigner-Seitz cell, [3].

REFERENCES

- [1] L. Michel, "Invariants polynomiaux des groupes de symétrie moléculaire et cristallographique", Proc. 5th International Colloquium on Group Theoretical Methods in Physics, Montreal 1976, Academic Press (1977), 75
- [2] L. Michel and J. Mozrzymas, "Applications of Morse theory to the symmetry breaking in the Landau theory of second order phase transitions", Lecture Notes in Physics, 79(1978)447, Springer Verlag, 1978
- [3] J. Mozrzymas, "On the structure of lattice vibration representations", INES/P/80/33, 91440 Bures sur Yvette, France(preprint)
- [4] J. Mozrzymas, "Image classification of lattice vibrations" (in preparation)
- [5] L. Michel and J. Mozrzymas, "A global approach to the study of crystallographic space groups" (to be published)
- [6] L. Michel, J. Mozrzymas and B. Stawski, "Extended little groups and their images for high symmetry wave vectors (to be published)
- [7] H.S.M. Coxeter, "Regular complex polytopes", Cambridge University Press, 1974
- [8] G.C. Shephard and J.A. Todd, "Finite unitary reflection groups", Canadian Journal of Mathematics, 6, (1954),274
- [9] A. Cohen, "Finite complex reflection groups", Ann. Scient. E.N.S. 4 e série, 9, (1976), 379
- [10] H.W. Streitwolf, "Group theory in solid state physics", Macdonald London, 1971