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1. Introduction

Ordered media form a large class of condensed matter systems,
appearing in either a uniform or a nonuniform state. The uniform state
is characterized by the fact that it possesses a definite symmetry
group H. H is a subgroup of G, the symmetry group of the physical laws.
This higher symmetry group G, from which the symmetry of the uniform
medium is broken, can be a geometric group or a gauge group. Examples
for ordered media are solid crystals and liquid crystals, where G is
the full Euclidean group E = T(3)-0(3) or its proper part EC = T(3)
~80(3); and the superfluids and superconductors, where G is the gauge
group U(l) or a more complicated gauge group. Uniform ordered media,
being systems of broken symmetry, are degenerate with respect to one
or more parameters #: there exist nonequivalent equilibrium states for
which £ differs but whose thermodynamic potential is the same for pre-
scribed homogeneous external conditions. One of the simplest of such
systems (and hence a standard example) is a nematic liquid crystal.
The nematics are anisotropic fluids, composed of rod-like molecules
whose long axes are preferentially aligned parallel to a unit vector
fi. They have translational continuous symmetry and orientational axial
symmetry Dmh' The director A serves as degeneracy parameter. All nema-
tics of the same chemical composition, temperature and pressure but
differing director are degenerate. The range of values of the degene-
racy parameter is the "manifold of internal states" V. For nematics
V is the projective plane P, , i.e. the set of points of the surface
of a unit sphere, where opposite points are identified, since & and
-fi are equivalent.

In nonuniform ordered media the order parameter is a local gquan-

tity: these media are described by a continuous mapping
3
p: R - A - v

X woE= $(x),
where to each point x a degeneracy parameter ¢ = ¢(x) is assigned.

There may be points, lines or walls Awhere ¢ is singular. These con-
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stitute the possible defects of the medium. Defects are most striking
in liquid crystals: they can easily be detected by use of the polari-
zing microscope. Efforts to classify defects have been made for al-
most a century. Recently, a classification scheme has been proposed

by Toulouse, Kléman, Michel, Rogula} Volovik and Mineev? that

applies methods of algebraic topology. It is interesting to note that
liguid crystals, which have been investigated by physicists as well as
chemists and biologists, belong now to the most important systems of
condensed matter, to which topological methods are applied, and also
attract the curiosity of mathematicians.

2. The topological classification of defects

The idea behind the new classification scheme is roughly the
following: let A be either a single point, infinite line or wall. Two
"defects" ¢, ¢': R ~A + V are equivalent if in all space R?, apart
from A , the fields ¢, ¢' can be deformed continuously into each
other without creation of new singularities. By "continuously defor-
mable" or, equivalently, "homotopic" is meant that there is a con-
tinuous family of fields (¢t: R¥-A + V| 0<t<1l} such that ¢0=¢ and ¢l
= ¢'. A,the "core" of the defect, is in physical reality a three-di-
mensional object, necessarily of a different phase, and a region sur-
rounded by high strain energies. Creation of new defects costs energy.
Hence, if topological considerations demand that two fields ¢, ¢' are
inequivalent in the above sense, they represent metastable equilibrium
states separated by a high energy barrier. In particular, a defect is
unstable, if ¢ is homotopic to the uniform phase. In systems of gauge
symmetry, the defect cores are zeroes of complex wavefunctions whose
energy density is lowest at nonzero values.

If A is a single point or a single (infinite) line, then the
space R%-4A is contractible to a twodimensional sphere s? or a circle
s!, respectively. Generally, for defects of dimension d' in a space
of dimension d, the set Rd—A is contractible to an r-dimensional
sphere Sr, where d'=d-r-1l; for a topological defect classification it
suffices to survey the field ¢ on a sphere s~ surrounding the defect
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core. Hence, line defects in three dimensions are encircled by a
closed loop I'. Mapping the points of this loop into the manifold of
internal states by ¢ results in a closed loop ¢(T) in V. The above
definition of equivalence can be reduced to the following statement:
two line defects are considered identical if the mappings into V of
the loops surrounding them are homotopic. Thus each type of line de-
fect corresponds to a class of homotopic loops in V. Generally, de-
fects of dimension 4' in d-dimensional space are in one-to-one corre-
spondence with the classes of homotopic mappings of r-dimensional
spheres into V, d'=d-r-1. In a two-dimensional amorphous ferromagnet
(or the XY-model of a spin system in continuum approximation), for
example, at fixed temperature the length of the magnetization vector
is constant, and V is a circle. In going around a point defect on a
closed loop, the degeneracy parameter runs an integer number of times
n about this circle. This number labels the homotopy class. To change
this "winding" number, on each loop at least one point must be made
singular. Therefore on an entire ray extending from the point to in-
finity the magnetic phase must become paramagnetic in an intermediate
state. By investigating a defect locally through a loop or a sphere
(rather than studying the entire field ¢) it is now possible to classi-
fy parts of a defect network, single defects of many defect systems,
or the combination of defects. Thereby it is of importance that the
set of homotopic loops in the manifold of internal states possesses
an algebraic structure. The sets of homotopic loops in V which start
and end at a fixed (base) point En form the fundamental group WI(V,EQ
of V at Eu. Freely homotopic loops, and hence the classes of defects
of dimension d'=d-2, are in bijective correspondence with the conju-
gacy classes of nl(V,ED). The homotopy classes of based continuous
mappings of two-dimensional spheres S? into V form the second homo-
topy group 7 (V,£ ). Defects of dimension d'=d-3 are labeled by the
orbits of %V,C ? under a group action of w (V,£ ). These results
of homotopyztheo;y, which are standard for maéhemaiicians, have been
discussed in a series of introductory review articles?

There is a close relation between the manifold of internal states
V and the symmetry group H of the uniform system. The group GO>H acts
transitively on the parameter %, i.e., if ED is an (arbitrary, but
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fixed) base point in V, then V is the orbit of £ under the action of
G: V=G§° . H is the little group of Eo: H50=£° ? Then, if an ele-
ment g€ G transforms gn into £eV, all elements of the coset gH pro-
duce the same transformation: §=ggo=(gH)g0 , and § can be identified
with gH. The orbit V=G{ is isomorphic to the coset space of the little
group H of £ (the symmetry group of the uniform medium) in G: V=G/H

= {gH|ge G} . To obtain the following theorems for the computation of
homotopy groups, G must be chosen arcwise ‘and simply connected. For
mesomorphous media this can be achieved by using instead of SO(3) the
special unitary group SU(2), and instead of SO(2) the group T(1)=R,
and lifting the proper part of the isotropy groups into these covering
groups. For such a choice of G and H the long exact sequence of homo-
topy groups® provides the following isomorphisms:

nl(G/H) = H/H® , (1)

vz(G/H) = ﬂ‘(HU) . (2)

H® is the component of H which is arcwise connected to the unit ele-
ment and as such is an invariant subgroup of H. The cosets in the fac-
tor group H/H® are the different connected parts of H. For media of
discrete isotropy groups H? = 0. This is the case for crystals. Accor-—
ding to isomorphism (2) crystals have no stable point defects. The
fundamental group is the double group of the proper part of the space
group. The translational part of this group is just the Bravais
lattice of the space group; consequently dislocations are classified

by Burgers vectors.

3. Transformation of defects in phase transitions

The behaviour of defects in phase transitions is still far from
explained quantitatively. The homotopic classification scheme can pro-
vide qualitative answers in the form of selection rules. Given a phase
2 of symmetry group Hz, and a phase 1 of symmetry group H:' and the
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labeling scheme of the defect classes, into what defect of phase 1
does a certain defect of phase 2 transform in the phase transition
2+ 12" 1f Hzc Hl, then the uniform medium 2, described by the con-
stant field ¢2(£)59H2, g€ G, becomes the uniform medium 1 of field
¢1(£)Eng, according to the projective mapping

gH > gH . (3)

p maps each coset of G/H2 into that of G/Hl which includes it. The
most straightforward model for the phase transition of a nonuniform
medium is to assume that at each point (in the volume as well as at
boundaries) the symmetry is broken and the degeneracy parameter trans-
forms as in the uniform medium. Thus at a point r, ¢2(£) turns into
¢l(£)=(p-¢2(£), and, conseguently, the loop ¢2(FJ in G/H2 turns into
the loop (p=¢ ) (P) in G/H . p relates loops (and closed surfaces) in
both degeneraéy spaces ané leads to a homomorphism

pif) ¢ me/M) -+ m e/m) (4)

between homotopy groups of arbitrary degree r>0. Simultaneously pir)

induces a mapping between the orbits of ﬂr(G/Hj) under the group action
of ﬂ‘(G/Hj), j=1,2, respectively. This mapping is the selection rule
for the phase transition of defects of dimension d'=d-r-1 in d-dimen-
sional space.

As a simple example we consider the transition biaxial nematic +
uniaxial nematic. The biaxial nematics are liquid crystals to which
much attention has been paid by theorists, but which unfortunately
have not yet been found in nature. They are fluids, i.e., systems of
continuous translational symmetry, but of discrete rotational symmetry.
The simplest biaxial nematics have symmetry D2h and can be imagined
as fluids composed of oriented boxlike molecules. The fundamental
group of this system is ED (the bar denoting a double group), isomor-
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phic to the quaternion group Q. Since Q is nonabelian, there are topo-
logical obstructions for the crossing of line defects, which may have

interesting physical consequences." The relevant groups for both
phases are: -

H = T(3).D i H =T(3).D_ ,
2 2 1 o«
H: = T(3) i Hg = T(3).C_,
H/H'"'=D =90 , H /H® = 2 "
2 2 ] 1 1 2
m (H®) =0 , m (H°) =3 5
1 2 1 1

Z2 is the two-element group. The homomorphism pil) relates the follow-
ing elements:

+ icx, + icy » T (5)
The 360°-disclination (-1) and 180°-disclination about the z-axis
(iiUz) become unstable (0), the 180° -disclinations about the x- and
y-axes (iiux, 1icy) turn into the stable 180°-disclination (1) of the
uniaxial nematic. The cholesteric liquid crystals also have the qua-
ternion group as fundamental group. The degeneracy parameter of the
cholesterics is a director and a pitch-axis orthogonal to it, along
which the director rotates continuously. The cholesteric liquid cry-
stals can therefore be viewed as twisted nematics, and homomorphism
(5) establishes a correspondence between the defect structure of both
points of view. From homomorphism (4) it follows that in the reverse
transition 1 » 2 a defect labeled by an element x& n _(G/H ) can turn
into any defect of phase 2 labeled by an element of the inverse image
pir)-l(x), provided this image is not empty.

If, however, the inverse image is empty, the defects of phase 1
break into defects of higher dimension in phase 2. This fact has been
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proved by Mermin, Volovik and Mineyev?'S for point and line defects in
superfluid *He-A, where a subset relation V €V exists between the
degeneracy parameter spaces of the dipole lécke& and the dipole free
phase. Also Kléman and Michel have presented an example for the phase
transition smectic A -+ smectic C . Given the mapping ¢l: Rd—A—»G/Hl
which describes the higher symmetry phase, we have to search for a

mapping ¢2 and a set Az?»A1 for the lower symmetry phase such that
the diagram

Rd—A - G/H
1 6 1
q 4 1 " P
Rd—A > G/H
2 ® 2
2
commutes up to continuous deformation. Here q(x)=x for gAeRd—A . In

2
the following a general method to construct the msulting defect pattern
A is illustrated by the example of a "hedgehog" point singularity
2

(director parallel to r) in the transition uniaxial + biaxial nematic

b {e)

0] — X
0 o I
H
|
Fig.la. Resolution of the Fig.lb. Domain and range of the
sphere around a point defect "Burgers paths" {g(t ,t ) € G|
into Burgers circuits. Oitl,tzil] that corfespond to

the Burgers circuits of Fig.la.
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As in Fig.l, the sphere around the point defect is resolved into loops
("Burgers circuits"), parametrized by (a,t)e€(0,1] x [0,1], where a
labels the loops, t its points. The values of the degeneracy para-
meter along these loops are described by elements of G acting on the
initial point EO: E(a,t)=g(a,t)£0. Thus a continuous family of
"Burgers paths" is obtained in G. When operating in G rather than in
G/H, a cut must be made on the sphere (in this case consisting of a
single point), and the endpoints of the paths, {g(a,t=0)} must form a
closed loop in Hg. As is kngwn from the isomorphism between absolute
and relative homotopy groups™ for the case of the hedgehog point
defect, this locop runs once around Em. In the phase transition Hg is

reduced to the set of discrete points Hor\H2={11,tioz} (Fig.2).

1

A
-
-b
{1}y 6=su@|{1}
o —
H|"Coo
. et
L de, =k ~ig, |
c d @8 %
Fig.2a. Line defects arising Fig.2b. Domain and range of
from a point defect in the trans- the corresponding paths in G.

ition 1+2 and the circuits to
analyse them.

The least molecular rearrangement to meet this situation is required
if the 1mage of each vertical line (a=const, t) is bent into the

nearest point of Hgn HZ' A path g{a=const, t) in G, terminating in
a component of H2 different from Hg corresponds to a nontrivial loop
g(a=const, t)H2 in G/Hz. Hence in real space, loop b of Fig.2 does

enclose a stable line defect, loop a does not. Loop ¢ is homotopic
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to a_l

b and encircles a 180°-disclination (ioz) in the right sense,
with respect to the ray emanating from the point defect , as do
loops d, e and f. The homotopy classes labeling these line defects
must lie in the kernel of homomorphism pil). One might investigate
the transformation of the hedgehog point defect by the long exact

homotopy sequence 2

(2) (1)
— 7, (6/Hy) B moG/H) B wo(n /H,) 2 ) (6/H,) .

The point defects under consideration are not in the kernel of A,

but in the kernel of iil)‘

A which is the entire group WZ(G/Hl).

The analysis of A indicates a situation where the four line defects
collapse to a single ray which can escape to infinity. Mathematic-
ally, Az being a single ray is the simplest response of the defect
structure to the phase transition, since R3 —Az is then contract-
ible not permitting any stable defects, The distortion of the four
line defects of Fig.2 to a single ray, however, seems to require too
much energy to be realized in nature.

For r = 3 homomorphism (4) represents the selection rule for
phase transitions of configurations in three-dimensional space. Con-
figurations are nonsingular mappings

¢ = Rd —_ v

with the boundary condition ¢(r) - £, for |r] + ». For all meso-
morphous phases n3(v) = 7 (= set of integers),8 and relation (4) is
an isomorphism. No stable defects can arise in a phase transition
between configurations. For the phase transition uniaxial + biaxial
nematic a construction similar to that of Fig.2 but in one dimension
higher, demonstrates, that line defects can appear forming closed
loops. There exists an experiment confirming this statement: in
cholesteric liquid crystals Bouligand et al.9 have observed rings of
360°-disclinations in the cholesteric pitch. They assign to them a
"double" topological character, locally as line defects corresponding
to an element of the fundamental group for cholesterics; globally as

a nonsingular configuration of a (twisted) nematic.
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4. Conclusion

The geometrical model of a phase transition and the conclusions
drawn by topological considerations are qualitative and require a
verification by investigation of thermodynamic potentials and strain
energies. But even quantitative theories of defect phase transitions
must take into account the topological classification in the form of
boundary conditions. Our model should be valid in the far field of
the’defect, where ¢ is nearly uniform and the strain is small. The
nature of a defect, however, is alsc resembled in its far field. If
defect transformations break the selection rules provided by homo-
morphism (4), the far field must be completely rearranged which seems
very unfavorable energetically.

It has been suggested that for media of discrete translational
symmetry some intermediate states in the continuous deformation of
field ¢ into ¢' might not be physically realizable. Hence there
would be a difference between "mathematical" and "physical" homotopy,
caused by certain compatibility conditions. These conditions, not
yet successfully incorporated in the classification scheme, will lead
to a subclassification and refine the selection rules but not break
them.

The theory presented above has a number of additional applica-
tions. Defects of phase 2 with a nonsingular core of phase 1, for

instance, must correspond toc homotopy classes in the kernel of homo-

morphism (4). Sometimes defects in only that part of the degeneracy
parameter are considered which can easily be influenced by the form
of the vessel. 1In superfluid 3He—A, for example, the degeneracy

parameter is a tripod of which one leg, the angular momentum vector
of a Cooper pair, is perpendicular to outer surfaces. In a conjec-
tured phase transition, where phase 1 is governed by the incomplete,
phase 2 by the complete order parameter, these defects can be related

to the singularities of the actual manifold of internal states.
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