o
malicn no. 10 pp. 167-196 1981

SELECTION RULES AND SYMMETRY BREAKING*

Joseph L. Birman
Physics Department
City College, CUNY
New York, NY 10031

Abstract

A brief precis is given of group theory aspects of two major
theoretical approaches to symmetry breaking in phase transitions in
solids: the thermodynamically based Landau theory and the Renormaliz-
ation Scaling methods. A connection is made with the type of selection
rules discussed in my other paper at this Conference (see these Pro-
ceedings) . Results are given for some important physical systems
such as high temperature superconductors with space group Pm3n ex-
hibiting a structural phase transition, and systems in the perovskite

Pm3m family, such as PrAlO3 which show a sequence of phase transitions.
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1. Introduction

This report has as a major purpose to provide an introduction to
the use of group theory - particularly representation theory of crys-
tallographic space groups - in the investigation of symmetry breaking
in "continuous" or Ehrenfest "Second Order" phase transitions in crys-
tals. For these transitions the system is always characterized by a
single thermodynamic quantity: the Gibbs Function, or Thermodynamical
Potential ¢. It is assumed that the system is a "single" homogeneous
crystal whose symmetry is characterized by a crystallographic space
group G, when the external conditions such as temperature and pressure
or external fields or generalized stresses are specified. If the ex-
ternal conditions are changed to some new temperature and pressure,
the Gibbs Function ¢ will change continuously. This defines a con-
tinuous phase transition. According to the Ehrenfest classification
the order of a phase transition is the lowest ordinal derivative of ¢
which is discontinuous. A second order transition then means con-
tinuous ¢, and first derivative, with ¢" discontinuous,

At a phase transition point, however, symmetry changes discon-
tinuously. For example, discrete elements of symmetry may be lost,
or gained. The crystal symmetry group changes to a subgroup of the
initial group. Landau was the first to attempt to reconcile these
apparently mutually contradictory features, and we shall give a syn-
opsis of his thermodynamically based theory in what follows. This
theory is still in active use, and has been validated by recent micro-
scopically based theories which demonstrate its domain of validity.

One of the most powerful of the modern theories of phase trans-
itions is the Renormalization or Scaling Theory. This theory was
developed mostly by Kadanoff, Wilson and Fisher. It is concerned

with a microscopic, quantum, theory of the properties of the crystal
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in the vicinity of the phase transition. This theory emphasizes the
calculation of physical response functions such as specific heat,
susceptibility, correlation length of fluctuations and similar quan-
tities. It particularly emphasizes the temperature dependent part

of these response functions, certain of which typically show a power
law divergence of form (T—Tc)p (p <0) as T -+ Tc , and can also es-
taklish whether a transition is continuous or not if fluctuations are
included.

This is the setting in which the present report should be con-
sidered. The two major approaches to the theory of phase transitions
are:

The Thermodynamic-Based - Landau Theory;
The Renormalization (Scaling) Theory of Kadanoff-
Wilson and Fisher.

I recently reviewed the Thermodynamic-Based Landau Theory at the
Sixth International Colloguium on Group Theory (Tubingen 1977) with
particular attention to the Group Theory aspects of the theory.1
I refer the reader to that report for many details. Here I shall
give a precis of that paper paying particular attention to the selec-
tion rules appropriate to the Landau Theory as applied to crystals,
since this paper can be viewed as closely related to my other con-
tribution in the present volume, An illustration of structural tran-
sitions will be presented.

Several reviews have appeared recently2 on the Renormalization
Scaling methods of obtaining "critical" behavior of the physical
response functions in the vicinity of the phase transition point.

The reader is referred to them for details about this method and its
applications.

We reiterate for clarity that the continuous change of "physical"
properties of the system undergoing second order transition refers to
the energy, or free energy. The abrupt change of the
system regarding symmetry implies that at temperature T > T, the system
is "disordered": if cj is some order parameter, its average value‘or
expectation value <cj> =0. Por T < Tc, the expectation value < PR S

# 0. Thus some "order" is present and the previous isotropy in the
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order parameter space is broken - only those symmetry elements g
which preserve the ordered configuration are now in the isotropy group
of the system. These are a subset of the previous set.

L}

Returning to thermodynamics recall that 3 ¢AT S, the entropy.
Hence at Tc entropy is continuous. But T( ?@/ﬁT)p = cp the specific
heat at constant volume. This is in general discontinuous - a jump,

or "\ singularity" of specific heat at Tc' Since

(Acp/T)/ﬁP/dT) = APVAT)

there can be a discontinuity in the thermal expansion coefficient at
Tc, even though no volume disceontinuity occurs.

For a true first order transition AS#0, and AV# 0 at Tc' A
major rearrangement of atoms may occur. As a rule this type of tran-
sition occurs because of a crossing of two different functions Lo and
02 both of which refer to the system in different domains of variables
(T;P) but coincident at a point. Perhaps in a true first order tran-
sition from space group Gl + space group G2 the system must pass
through a state of total isotropy: Gy > 0(3) > G,?

A weakly first order transition with A8 ~ 0, AV ~ 0 may be in-
corporated into the thermodynamically based Landau Theory: it is
"nearly" second order.

2. Discrete Symmetry Breaking in Continuous Phase Transitions

The thermodynamically based Landau theory is concerned with sev-
eral aspects of phase transitions. It is a theory in which the abrupt,
or discrete loss of one or more symmetry elements at a phse transition
point is recconciled with the continuity of ¢ and ¢' at the transition.
It is also a theory in which the critical behavior is obtained., It
thus appears to have the capability of dealing with all of the impor-
tant matters of interest. Unfortunately the theory is not universal
because of the neglect of fluctuations (or if one prefers to look from
a different viewpoint), of inhomogeneities in the system which play
an important and in some cases decisive role very near to the trans-
ition point. It would take us too far from the topic of this paper

tc attempt to enumerate classes of situations in which this theory
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can be rigorously shown to be applicable. The reader is referred to
references given in general reference 2 for further discussion.

The thermodynamic-Landau Theory can give answers to the following
questions concerning a particular group-subgroup pair: GO 2 G';

Can a continuous transtion G0 + G' occur?
What "order parameters" can be the physical entities
producing this transition?

In what follows we show how this question can be answered within
the confines of the Landau Theory, and we shall give an illustration
of application of the general theory to structural phase transitions.

We remark also that part of the formal structure of the Landau

Theory applies as well in the context of Renormalization methods.

Landau introduced a density functional D(;) which has the sig-
nificance that p(¥) dr is the probability that in the volume element
dt about r there is a particle of a certain type. This density func-
tional will serve also as a test function for symmetry. The sym-
metry group of the system G is the isotropy group of p(;):

G: fg; gp(r) = p(T)r}

Now if G0 is the initial symmetry group of p(;) symmetry breaking
occurs if some elements g ¢ GO are lost. The new isotropy group G'
will be subgroup of GO
G'C Gy Gy = G't g,6'+
using Qa to denote the coset representatives which were "lost".
Thermodynamic stability of the system can be investigated by con-
structing the Gibbs Free Energy ¢ and using the extremum principal of
classical thermodynamics to determine the values of any "unconstrained"
parameters {cj}. For stability ¢ must be an extremum with respect to
variation of any such parameter. Physically, these internal "order
parameters"” readjust themselves spontaneously to produce the extremum.

For stable equilibrium, ¢ must be minimum. Analytically, at TC:
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, T g « B2 S|
3@/3(:& 0;: 23 ¢/30aacg>0.

The idea is to select the set of order parameters
(ci} g 0 AL e lj

so that ci are bases for a single irreducible representation p? of Gyt

{ci} + D) of Gy ; dim D) = 2

j
Then use (cj) both as unconstrained parameters in ¢, and as a linear
(symmetry) expansion parameter in p(r) Recall that any function can
be expanded in terms of a "complete" set of functions which are part-
ners in all irreducible representations of a group GO:3 Hence

p(E, (I = 0y &, 1Th) + 80 G, tTD

where

s (z, {cj})

p I L
Ley ¢y 0
Q
Here ¢i(}) are basis functions for DI

s W s (O
pg p(r) = ¢ (g 1)

é DY (g) g, $3(D) .
The essential point is that the symmetry breaking term §p is a linear
functional of the order parameter which we take as the set {cJ}.

The Free Energy ¢ is taken as a functional of the set {c]} which
are bases of the single irreducible representation D:| ¢ is expanded in
a power series

0

&(T,P, Iy =% + af(2) Iy

+ e Iy + T o, e (eI o+ Ll
Y
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The f¢5) are Go-invariant polynomials of sth degree, and distinct

ones labelled by index s. In order for the phase transition to occur,

consistent with assumed homogeneity of the crvstal system before and

after transition, and with stability (identical absence of a cubic

term f by virtue of symmetry prohibiting construction of a third

degree invariant) the order parameters {cj} must obey Selection Rules.
Stability requires absence of f(3) or:

) -,
By % © (0

Spatial Homogeneity requires absence of terms:

(cgacéﬁx—cga cgﬁx)

and permutation (x»y+z+x). Thus using the notation of the previous
paper4

vV ox ot (1)

D%Z] 2 D
where [2] means antisymmetrized square, pY is the polar vector repre-
sentation in Dv, D1 is the trivial rep}esentation, all referring to G-

If a set of order parameters {cg} obey thesc Selection Rules, =2nd
correspond to a physical quantity (or field) relevant to the transition
in the particular crystal and substance then (cj} is an active set of
parameters.

3. Subduction and Symmetry Breaking

The Landau program involves solution of the Ej simultaneous equa-
tions
3e/3c) =0 @ =1,... 0y
where Ej = dim D7. This is a difficult, and often tedious algebraic
procedure involving solution of %, simultaneous cubic equations (1f
the highest degree Go—invariant polynomial kept is f(4))or even higher
degree. When the extremizing sets {Eg} are determined, these are
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substituted into
- _.j j->-
8p g Ca ¢u(r)

The isotropy group G' of Sp((Eg])is the subgroup corresponding to
symmetry breaking GO*G'. Different extremizing sets of {Eg} may arise
(not equivalent to each other) and give different subgroups.

I introduced the subduction criterion as a procedure to avoid

this algebra. Evidently if

) of G, + D' of G (111)

then Gy»G' can occur via the order parameters Ecg}.' Thus any ex-
tremizing set {Ei} must be a subset of the full {cg} which satisfies
the subduction property (III). Subduction has been conjectured to be
sufficient as well as necessary but this is unproven,although no valid
counterexamples have yet been brought to my attention.

Further extensions of subduction was produced by Goldrich, and
Jari¢ working with me>. The chain subduction eliminates subgroups
of subgroups. Let G"e G'c G0 and let

p) of GO ¥ D1 of G' (c times)

and (IV)

pJ of G, + pt of G" (c times)
Then G" is eliminated. That is the actual (maximum) isotropy group
of ép is G' which of course implies that &p is invariant under any
subgroup of G'.
The Selection Rules (I), (II), and the subduction criteria (III),
(IV), together with the evident group - subgroup condition

G' e G, (v)
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permit investigation of symmetry breaking within the domain of the
Landau Theory. No particular attention is given here to problems of
critical exponents.

Another procedure eliminating need for algebraic extremization
of ¢ (Landau-Higgs polynomials) has been given by Michel and Mozrzyma36
using Morse Theory. Although elegant, it seems restricted to Ej < 3 at
present.

Then, the thermodynamic Landau Theory can be viewed as a theory
of symmetry breaking continucus phase transitions in which the fol-
lowing questions can be investigated:

A) The transition G0+G‘ occurs: determine mechanism;

B) The group G0 is known, predict possible subgroups G',...,
and for each group - subgroup transition determine the
mechanism;

C) Transition to G' occurred; determine the possible parent

groups G, and for each the mechanism.

0
In the above the term "mechanism" is used to denote the symmetry
D) of active representation, and the bases {cg} which are physically

significant order parameters.

4. Physical Order Parameters

In order to clarify the physical content of the term "order
parameter"” which indeed refers to the physical agency responsible for
the phase transition some illustrations may be helpful. In each case
note that the set of order parameters {cg} is assumed to be a basis

for irreducible representation DJ of G In any particular system,

0°
the choice of relevant order parameter is made depending on the

physies.

Lattice displacements (motion of the ions or atoms comprising

the crystal) are often the mechanism for structural phase transitions.
The normal modes may become "soft" in the sense that the frequency
w(ﬁj) decreases T -+ Tc, thus producing the transition. Normal mcde

symmetries were discussed in ref (4).
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Magnetization can be an order parameter for magnetic transitions
in which a spontaneous magnetic moment (ferromagnetism or antiferro-
magnetism) develops in the system. Local moments (intrinsic atomic
spin moments) may cooperate to produce a self-consistent spontaneous
magnetic field in which the moments align. The order parameters can
be the components of the total magnetization which are like an axial
vector, or sublattice magnetizations which have more complex struc-
tures, Normal magnetic modes can be constructed by superposition of
the atomic moments - these transform as irreducible representations
o) of Gy,

A tensor order parameter for transitions can be constructed by
taking the Kronecker product of local atomic spin moment and dis-
placement7.

An electronic order parameter or charge density wave can be
created from electronic eiqenfunctions4 (Bloch funct;ons wkj) which
-
produce a total order parameter with the symmetry D kj.

Spin density wave or continuous spin density distribution can be
an order parameter.

The spontaneous electrical polarization of a ferroelectric crystal
can be an order parameter - usually this is a special case of "soft
mode" lattice displacement or normal mode. The appearance of a non-
zerc electrical polarization: <B> # 0 then implies <Qg> # 0 where
Qg is a normal mode.

In the normal » superconducting transition of certain metal or
alloy systems, the disordered state (higher symmetry) corresponds to
"no Cooper electron pairing”: it is the normal metal. The state with
finite number of electron pairs .(Cooper pairing of time-reversed
occupied states: k spin up with -k spin down) is ordered. The order
parameter in superconductivity is the number of pairs <ﬁ>. Actually
this can be viewed as breaking of continuous symmetry since, in the
normal state [ﬁ,ﬁ]_ = 0 where ﬁ is the Hamiltonian operator and i the
(conserved) electron density. The resultant symmetry is the gauge
symmetry U(1l). 1In the superconducting state [Q,ﬁ]_ = 0 and gauge
group symmetry is broken in the ordered state.

A final example of an order parameter is related to surface
adsorption of "ad-atoms" on a solid surface to produce an ordered

superlattice. The density of coverage can be taken as an order para-
meter.
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Many other examples of physical order parameters could be given
- a discussion of this is given in a useful form in the recent book by
Boccara [8].

5. Illustrations of Symmetry Breaking

1f a general physical theory is to have merit, it should be
capable of correctly predicting specific physical phenomena. In the
form of the symmetry rules (I)-(V) given ‘previously the theory is
capable of analysing gquestions A,B,C, of Section 3.

For illustration we cite two of the space groups for which this
program has been carried out: the space group Og—PmBn (No. 223) or
A-15 type; and the perovskite space group Oi—Pm3m (No. 221)

a} Structural Transitions in High Temperature Superconductors OE—Pm3n.

The A-15 type crystal structure has been of great physical inter-
est9 owing to the occurrence of high temperature superconductivity in
alloys (Nb3Sn, V3Si) with this structure. At temperatures close to
the superconducting temperature a structural phase transition occurs
from the cubic (Og) structure to a tetragonal structure space group.
The belief is that the two transitions are closely interconnected and
that understanding the detailed mechanism of the structural phase
transition may provide important understanding of the mechanism of
superconductivitylo.

Since there are two molecules/cell (2 AaB) there are 12 branches
of normal modes (3r) at each wave vector. As usual the sets of normal
modes are decomposgd into irreducible subsets which span irreducible
representations D*km, as described in ref 4 Section 6. The program
of analyzing active order parameters in this structure has been car-
ried out10 for wave-vector stars I',R,X and reference should be made
there for details. Some results will be cited for these stars:
giving star, set of normal mode irreducible representations, and ac-
tivity. We only give the results for the optic modes (mz(ﬁm)#O)if k0.
Notation is taken from the original papers. At

T: AZg ® Flg ® FZg (all inactive), plus

2Flu ® 2F (active)

2u
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All the inactive representations fail to satisfy the stability con-
dition (II). We did not use the homogeneity condition {(I) in this
work.

As an example of a predicted group - subgroup phase transition

which may occur in this structure, we find
PmIn(02) » Pamc (C!_)
- h av

Active order parameter Flu'

Since the active order parameter is at wave vector T = {(0,0,0)
the space group is "Zellengleich": no loss of translational symmetry
The chain subduction criterion simply eliminates sub-subspace groups
from consideration. This predicted transition has not yet been
observed. If it were, one could have a case of a "ferroelectric"
metal since the resultant space group is "polar"”, and consistent with
a spontaneous electric moment (polarization) parallel to the crystal
c or z axis, as noted by Anderson and Blount {see Ref 10).

The transition which does seem to be identified is: Pm3n (Oi)+
P4 /mmc (Dzh) in Nb3Sn which is produced by a uniform strain of sym-
metry A2g' Since this order parameter violates the stability criterion
the transition cannot be continuous. It is in fact weakly first order.

Other examples in this structure are given at *X and *R in ref
10 involving cell doubling or multiplication in one or more direction.
In view of the great physical interest in these systems work on them

is actively in progress and the literature should be consulted.

b) Structural Transitions in Perovskite Ferrocelectrics - 0%—Pm3m

The "perovskite" structure Oi—PmBm is occupied by many important

3 Ba’.l‘io3 have been used in
applications to switching devices, electronic controls, ete. The high

prototype ferroelectric crystals: SrTicC

temperature structure is Pm3m, but as temperature is lowered one finds
structural transition such as: cubic » polar ferroelectric crystal
type. The polar type may be in rhombohedral (trigonal), tetragonal,
orthogonal, ... , class. In the work of Goldrich and myselfs we gave
an analysis of possible Zellengleich structural transitions. At T

the optic modes are
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T= BFlu -] qu

and both symmetry types are active. Examples of some predicted
Zellengleich continuous transitions are

Pm3m (0}) > R32 (6]} F,, mechanism

2u

R3m (Cgv) Flu mechanism
Again note the criterion (II) was not employed.

The report at this Symposium by Prof. Bérninghausenll has given
very many examples of transitions in a “"family tree" originating from
prototype Pm3m (0;) structure - some Zellengleich, some not. At the
time of writing the present report we have not yet completed an
investigation in progress to compare the theory and experiments. Not
all the transitions cited by Prof. BiArninghausen seem to have been
classified in terms of first or second order of transition.

I want to turn to another system in the perovskite class which
has been the subject of very recent investigations.12 In PrAlO3 the
prototype high temperature structure is Pm3m—0; for T > 1320 K. As

the temperature is decreased, a sequence of transitions occur.13 At

T = 1320 K pm3n(o}11) + R3c th'd)
. -5
via R25- phonon.

Now the normal mode R25- in this structure has symmetry of an allow-
able prejective (ray) representation of G(R) /T = Oh i.e. the full

cubic point group. The triply degenerate representation has 3 bases
corresponding to x,y,z displacements of the 6 oxygen atoms comprising
first neighbors of the Al atom at the center of the cube. In Fig. 1
(on the following page) we illustrate the edges of the octahedron at
whose corner are the 6 oxygen atoms in question: left side of Fiqure
labelled "cubic". We consider the cartesian displacements of these
oxygens:recall that wave vector R brings phase factors exp iR+t = -1

for translation from one primitive cell to the nearest adjacent one
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T
L

R = = (1,1,1); t, = a(l,0,0) etc]. <Corresponding atoms in adjacent

cells are thus displaced out of phase to each other.
factors into account it can be established that the "effective order

parameter” for this transition composed from the ko5 - symmetry dis-
placements is a "rigid" rotation of the octahedral cage of oxygens.

The direction of the axis of rotation
about that axis § are effective order
that in the succession of transitions
magnitude of about 9° and we can thus

Then the phase transition to R3c
octahedron about the [111l] direction.

Trigonal Structure. This transition

Taking these

n and the angle of rotation

parameters. Experiment shows
to be discussed € is the same
suppress it for our purposes.
is driven by rotation of the
This is fllustrated in Fig.l

is second order

(continuous)

12,13

as

shown by(:). The ordered trigonal state is characterized by appearance

of a non-zero rotation <n> # 0.
At

- - .6
T = 205 K B3R WMoy

) -

ca/m (chy)
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A
,
/
§
Y
—e
Cubic @ Trigonal @ Orthogonal
1320 K 205K

Tetragonal

Figure: Unit cell of perovskite structure. The top left figure shows
the octahedral "cage" of 6 oxygen atoms: at corners is Pr3+ ion, at
the body center is Al {these ions are not shown). The succeeding
figures (left to riqhté show the development of non-zero order para-
meter <cJ> ¥ 0 where c-” stands for the direction of the axis n as
temperature is lowered. Numbers encircled indicate if transition is
first or second order; transition temperature is given beneath this
number.
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This transition occurs when the direction of n changes from [111] to
[110] as shown in the Figure. The transition is first order since
C2/m is not a subgroup of R3C , thus condition (V) is violated.

Next, beginning at

} S e |
T ~ 151K C2/m (C),) cl(cy)

- the order parameter rotates from [110] to [cos&, sing, 0}, & < m/4.
As T decreases,f{ + 0. This transition is second order and in Fig. 1
is labelled Triclinic.

12a,14

It has been reported that another transition occurs at

T ~ 118K cI(ci) > 2,

The order parameter continues to approach [1,0,0] but motion of <n>
occurs giving it an out-of-plane z component. This transition has

not yet been fully understoodlza, and seems to involve coupling of

the rotation with other parameters. (Not shown in the Figure).
Finally at
T < 90K c1(ci) 2 » F4/mmc(Diﬁ)
This transition is produced when the axis of rotation points in {1,0,0
direction where it remains as T - 0K. The transition to this tetrag-
onal space group is second order.

In the cases just presented of second order transition it can be
verified that the order parameter - referenced with respect to the
higher symmetry pahse of the pair involved in symmetry breaking or
restoration - satisfies the Selection Rules (I)-(IV).

Ap interesting matter concerns the final transitionat T % 90K

when the symmetry increases at the lower temperature transition.
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6. Some Developments of the Theory

In this section I shall review two recent developments of the
thermodynamically based Landau theory.

Let us return to the expansion of the Free Energy & of the system
given II in Section 2. Recall that the wave vectors k are a quasi-
continuous array in the Reduced Brillouin Zone., Then the selection

km opens the possib-

of a single irreducible representation Dj or D"
ility that nearby irreducible representations (almost infinitesmimally
close) can be mixed in to the expansion of ¢. The reason the restric-
tion to a single irreducible representation arose in the initial
formulation of the theory now needs to be recalled. Each physically
irreducible inequivalent representation of GD (i.e. either real or
the direct sum of two conjugate complex irreducible representations)
correspond s to one distinct single bilinear Go-invariant

£Hedy = ) (e3)?

If more than one such f(z)appeared in the expansion of ¢ then at the

transition more than one "A" coefficient would vanish:
Aj(T,P) = Aj,(T,P) = ... =0

This would overdetermine the phase transition point. However, sup-

pose we allow for possible slow spatial variation of the order para-
meter - which nonetheless satisfies condition (II) on homogeneity

in lowest order. Then we may permit the occurrence in the expansion
of ¢ of terms involving spatial gradients. The expansion is now of

form

o

- = (2) (4)
¢ - ¢° = AG(T,P) £ + 3 D, £.7

¥

) [(a(ﬁcg)z) + B(§2c3)2 + o)
v
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The terms permitting spatial fluctuations can be rewritten if we re-

J

call that for the space groups the c” are of Bloch form

N -
e elk X

L (k1)

and thus approximately (in long wave length approximation)
eIt I
v v

Using these last results we can reassemble all fluctuation terms into
the bilinear f(z)({cj}) by redefining the effective A coefficient:

A(T,P,k) = Ky # ok? + gt ...

N
Then, the condition for second order transition is that A(T,P,k) for

fixed (T,P) shall be a minimum in k- (T,P,io). Clearly if

AvIn

-
a > 0; AMIN = AO: (k=0)
. = Fie T oo 1/2
@ < 0; Ayry = A(T,P,ko). ko = (-a/B)
Thus if « > 0, B > 0 the usual condition AO(TQP) = 0 determines a

line of second order phase transitions. However a new type of phase
transition occurs when
of(T,P) = 0, B >0

The last condition determines a line which separates a region in the
(T,P) plane where o > 0 and the usual condition AO = 0 applies, from
a region where a < 0 and thermodynamic equilibrium is achieved for
finite -}:0 # 0. The latter fegion corresponds to "helicoidal" (spiral)
modulated structures since kg will generally be irrational. If the
line AO(T,P) = 0, and the line «(T,P) = 0 intersect, they do so at a
point L which is a higher order critical point.

The point L is now known as the Lifschitz Point and the phenomenon
associated with occurrence of these temperature-dependent finite wave-
vector effects are Lifschitz phenomena. The equilibrium value of iU
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is temperature dependent since o and B will generally depend on T.
The Lifschitz phenomena are evidently connected (at least in some
generic fashion) with a "quasi-failure" of selection rule (II) on
spatial homogeneity. Reference should be made to the literature:
original work of Lifschitz, Dimmock, Dzaloshinsky; more recently
especially in connection with the prediction of the Lifschitz point
by Hornreich, Shtrikman, Mukamel; and elaboration of the relevant
thermodynamic theory by Michaelsonls.

A second topic which we mention briefly is the use of subgroup
methods in the thermodynamic theorylG. The motivation of this work
is that the usual theory (as presented in Section 2-4) may not take
account adeguately of crystal substructures. In a non-symmorphic
space group where the interaction between certain distinct sublattices
may be the major mechanism for the phase transition, the usual pro-

cedure of working with the entire space group G, and its irreducible

representations may obscure the essential physigs. Consider a sub-
space group of G0 denoted G}; where G6 is a group describing the space
symmetry of (for example) a substructure in the crystal obtained by
considering together several equivalent sublattices. This group Gé

can be a subgroup of G, and a "supergroup" of the ultimate subgroup

of G' achieved by the ghase transition. Now we may index the order
parameter "effectively" with respect to Gé' As an example, consider
atom site displacement as a local order parameter, which when induced
from the site to the intermediate group Gb can be indexed according
to irreducible representations Dj' of Gé. We may then use the sub-
duction criterion referring to

G0 + G0

For the thermodynamic calculations we consider the total Free Energy
% as:

& - ¢, =] D + 5@ ~ 70

O gl : §.hy ol

where we isolate the sublattice contribution and assume the inter-

sublattice contribution is small.
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Then (¢—¢0) can be expanded in Gé-invariant polynomials.
Carrying the theory through it is possible to find an order para-
meter which induced from site to irreducible representations of Gé
is active in giving second order continuous phase transition, while
the same site order parameter induced to.GU would give an inactive
or first order prediction. In this case we assert that the inter-

action terms QINT will produce a "weakly" first order transition -
or "nearly second order".

This approach was applied to the phase transition in A-15 alloys
mentioned above. HerE‘Gé is the symmetry group of the three sublat-
tices of "one dimensional" chains considered as a single structural
entity - for example the atoms in V3Si, and is Péz/mmc(Dzh). The
site symmetry group (at the V atoms) is 2mm(C2v).when atomic dis-
placement order parameters are simulated by taking £=2 spherical
tensor harmonics, at the atom sites as variables, the representations
are 'l ® T3 ® I'd ® I'5 (referenced on 2mm) which boost to '3 ~ (eXX—
eyy) on the group GA: P42/mmc. (This order parameter is only part of
the usual strain parameter.) Continuing using rules (I)-(V) on sub-
groups it is found that a transition Pm3n(0§) > P4222(92) can occur
as second order. But the same transition using full strain parameter

‘[2e - e - eyy] of the full G0 group gives a first order transition.

zz xAX
We conclude

3 5
Pm3n(0h) > P4222 (D4)

is "nearly second order".

Analogously, the component 1"4 BE., referenced re G6 gives second
order transition to Pdmc (CZV). Again we observe this as a first
order transition for the full group Gys sO we conclude

Pm3n(0}) > Pdmc (Cj )

is "nearly second order".

As remarked earlier, the transitions in Nb3Sn has been studied.
It has been identified by Shirane and Axe17 as producing the lower
symmetry space group G' = P4 ,/mmc (Dzh) - our Gé, by a weakly first
order transition. But our examination of the data, plus a conver-
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sation with Shirane indicates that the tetragonal phase could indeed
be labelled P4,22 (Dg) in this structure. For further details of
this subgroup approach reference should be made to the paper of Agyei
and myself,

7. Renormalization Transformations and Symmetry

We now turn to give a very brief account of some symmetry aspects
of the renormalization transformation method in phase transitions.

For given system, with symmetry group Gy, we proceed as with the
thermodynamically based Landau theory to identify acceptable order
parameters by investigating whether or not the Selection Rules (I)
and (II) are obeyed. We shall now consider the bases of the acceptable
irreducible representation Dj (recall j ~» (*km)) to be position de-
pendent fields wg(;), a=1l,.0., L. We construct the Hamiltonian
H(y]l, which is a functional of the field order parameters. We write

it as
Bl =-1/2 § £ a%% ¥y, - ¥ o)
o

=X 37 a%x I;s) u$
Y s

In this expression the spatial integral is over a "d-dimensional" con-
figuration space; the v is a spatial derivative; Iés) ([wj(;)]) is a
Go-invariant of sth degree, y labels the distinct invariants of sth
degree. Generally in practice such an expansion of H([y] is only
carried out to s=4, and of course includes the quadratic term s=2, as
well as the bilinear fluctuation term shown in the first line. The uj
are parameters, one from the bilinear ui, and (r-1) from the quadri-
linear ui: a total of r. A renormalization-scaling transformation R
replaces H[y] by RH[p] = HR[w]. The exact form
of R will not concern us here - it is in fact not "uniquely" determined
but the result of a sequence of procedures which have become canonical
in the last few years: Fourier transformation of H[Y]; integration of
large momenta down to some irrelevant cut-off; regrouping of terms to
recover the initial form of H[Y] as in the previous equation with
the discarding of higher order terms; then repeat the previous steps.
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(See ref. [2) for details.) For our purposes the most important aspect
of R is the fact that it maps H|J] upon itself, keeping the form in-
variant at each stage, but changing the r parameters. Conventionally
keeping terms up to fourth degree,H[y] can be represented as a point

in an r dimensional parameter space [I. The intitial H([¢] is then some
point 4 with coordinates (uz, ui...). After R is applied, one finds

’ 2 4 -
the new point U, with coordinates (u R’ YR ;.+-). Repeated appli

R . .
cation of R is viewed as mapping II on itself (by the conventions just
- b w3
given). The point u changes to up then Upprees I1f, after repeated

applications of R the sequence

>

5
r' Ypm’ -’ u¥, .

+ >
u u .

’
converges to a vector with property

+ -
O* = u*
5 u

then u* is called a fixed point,

>2% *
ux = (u2 ’ ui £ Rosa)

where ui* is the fixed-point value of u® The fixed point u* cor-
responds to a fixed Hamiltonian H*[§], with functional form preserved
(according to the structure of the calculation) as prescribed initially
but with new coefficients. From H*[y] critical exponents can be de-
termined from Z[H*[Y]] for this Hamiltonian.

Instead of this conventional view of the R transformation as a
mapping in the parameter space I, my conjecture is that the significant
mapping is rather in "Space of Invariants": <J . we propose to con-
sider the mapping R as producing a mapping in the space <f . Because
of the conventions adopted in defining R, the mapping is restricted
to be from <l onto M .

Dr. M. Jari¢ investigated some of these mappings [18). (An earlier
report related to this is the work of Korzhenevski [18]. Jaric ob-
served that if V ¢ O(Qj) is some orthogonal %. x . matrix, the par-

tition function of the crystal defined as a functional integral
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Z = I DYy exp H[¥]

is invariant under

j .
v} » v}

The physical properties of the system (correlation functions, critical
exponents, etc) are directly calculable from Z, and are unchanged by
this gauge transformation. However under a general V € O(Ej) the in-
variants I° will be mapped onto a larger space - in general outside
of ] , and outside H[y]. Only a subset of V will preserve the
functional form of H[y]. The subset forms a group denoted Gg:

6= (r; T} RT = R}

g
This group may be considered to produce new linear combinations of
the basic set I?. The group Gp determines the structure of the R
transformation.

Jarié¢ showed that the transformations V, which work on the bases

{w } commute with R and hence belong to G In fact the original
matrlces DJ realize transformations of the {wj} which leave each s
invariant and consequently D:| as a subgroup of G produces the

identity representation in G

Various other observations help in the construgtion of groups GT‘
Thus let D be a "maximal" group which leaves each IY invariant. Then
D is a normal subgroup of Gg. Hence Gg can be found as a normalizer

of D ifi OfL.J%
G_=1{v; Ve O0(2,), V D v = D}
g ’ b)

In his investigation Jarié restricted attention to s=4. Then, by
reducing the symmetrized fourth power of the matrices V in Gg we re-
strict attention (selection rule) to those V with property
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This produces G-

In a few concrete calculations the matrices V were found by a
brute force method. Given the set of 13. a=1,...{r-1), an arbitrary
Ej X “j orthogonal matrix was constructed, whose elements depended on
certain parameters

V(Gl,... a_)

p'aB

Requiring that

4 T4
I, (vlyph = §( DAYy

ICPAD

gives a set of (r-1) fourth degree equations for the p parameters.
In favorable cases a solution can be obtained (p < (r-1), and the
groups Gg and GT determined.

The procedure given results in some systemization or classifica-
tion of the sets of fixed points which can arise. Evidently repeated
application of R, per hypothesis, either leaves the structure of H[Y]
form—inzariant, and thus conserves the symmetry Gg of H[y], or (if
some ui = 0) will increase the symmetry sinze the fewer the invariants
the higher is the symmetry (example if all UY = 0, and the only re-
maining term ui, the symmetry group of the Gaussian H[y] is the full
O(ﬂj). Thus the space Il of the parameters {G), or the space gD of
invariants I$ can be dzcomposed into a disjoint sequence of H*[y].
These may be considered to begin at 0(£j) anc proceed through a chain
of subgroups:

0(2)> ... aD'>... 2 D

terminating in the "identity" group D whoseaction maps each Ij onto
itself. To each group corresponds a subspace (or a fixed point) in
II (or £ ) and this decomposition can reveal the structure of sets of
equivalent arrays of fixed points, and the structure of regions inll

related by transformation GT.
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Since this investigation is still continuing we summarxize by re-
marking that the results so far obtained indicate the considerable
merit in the use of group theory combined with Renormalization Scaling
Methods. Jarié's work illustrated the use of the symmetry groups Gg
and GT in: decomposing the parameter space 1 into subspaces according
to symmetry; finding sets of equivalent fixed points; analyzing the
"flow" of the Hamiltonian under R by use of GT.

8. Integrity Basis and Invariant Space

"Go—invariant" polynomials play a very important role in the two
approaches to symmetry breaking just discussed. Hence we briefly re-
view some pertinent matters. First a c}arification. The term "Go—
invariant" refers to the matrix group pJ which in general is a non-
faithful (homomorphic)} image of GO' Hence the invariant polynomials
f:, or 1° refer always'to inva?iance with respect to the transform-
ations of the bages {ca} or {wi(;)} respectively under irreducible
representation D). According to a "classical” theorem of Hilbert if Gq
is a finite group there exists a finite set of basic invariants known as
the integrity bases. Call the members of the integrity basis for irre-
ducible representation Dj of Gyt ] 91, 62, s sw i Om
where each 6 is a function of the {ci}, and m < \G0|. The set eu
generate the alqebr; of invgriants in the sense that the most general
invariant in the {cJ}, I({cg}) can be written as a rational integral
polynomial in the set {eu}:

ICLEaT) = Bl8ye Bou vaw o G
1f the (matrix) group Dj representing G0 is a Coxeter group (group
generated by reflexions) or a generalized Coexter group (unitary group
generated by reflexions) some strong results can be proved. The num-
ber of basic invariants, or order of the integrity basis is denoted m.
Let the algebraic degree (in cg) of the polynomial 9u be d“. Then
for (generalized) Coexter groups

n@) = 16!

3]
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where r is the total number of (pseudo) reflections in G Note

0-
that a (generalized) Coxeter group is a matrix group every one of
whose elements g can be written as an ordered product of powers of

generators

where each (matrix) generator g has all but one eigenvalue unity,
and one single eigenvalue elh where A = (7/n) n an integer for gener-
alized Coxeter group, or A = 7 for the case of Coxeter group. For
(generalized) Coxeter groups of interest so far in condensed matter
physics m is a small integer.

For groups G0 which are normal subgroups with Abelian factor
group of a (generalized ) Coxeter group the structure of a general
polynomial invariant is

L 5
L Batligeaeeas B v § doleipod B scder Bl
i=1
The additional polynomial invariants ¢i(cg) occur linearly premulti-
plying the arbitrary polynomial Pi in the members of the integrity
basis ﬂi. [19]

The possible importance of using the invariant polynomials of
the integrity basis to construct the free energy % for a thermodynamic
theory of symmetry breaking was apparently first realized by Gufan
and collaborators [ 20].

The simplest illustration for a Coxeter group is the cubic point
group m3m:0h. The members of the integrity basis for the three
dimensional faithful irreducible representation based on {cl} = (x,v,2)
are
o, = 7 chZo, = ] h 6, = @h2ieh?ich?

1 ety @ " g =y o’ ¥ 73 L 2 3
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Since m3m is a Coxeter group the dimension formulae are easily veri-
fied.

In constructing the Go-invariant objects ¢ or H[p] it is a

th

natural to determine the number of distinct invariants of n degree.

Molien [ 19 ] gave an algorithm for this by constructing a generating
function for the multiplicity of the trivial irreducible representa-

tion in the symmetrized nth Kronecker aproduct D%n)' It is denoted CRE
r

The Molien function is:

X 1 :
M(D), Gyiz) = E cn’lzn = 15, g (det[1-zD7 (g) 1)~

1

The sum is over the entire group. Jarié and I simplified this expres-

sion so that it could be easily applied to space group irreducible

representations using only the character system [21]. Let
x{g) = Tr p3 (9)
then
M(Dj, Gyi 2) = |% | 7 exp(] 2™x(g™ /m)
0 g m

In this form many Molien functions were computed for space group Pm3n [21].
It is worth noting that for a (generalized) Coxeter group the
Molien Function takes a particularly important form

Mod, 6y z) = TT (1/(1-2%M))

which permits one to directly obtain the structure of the integrity
basis, namely the set 81, o w5 mp Om LE9] .
Using the Molien series we are able to construct ¢ and H[Y]

relatively easily, especially if we are prepared to truncate these

th

"Go—invariant“ physical quantities at terms of 4th or 6 degree, re-

quiring only the coefficients ¢ ; and ¢ ”
4,1 6.1
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Some very interesting questions remain concerning the relevance
of the ring (algebra) of invariants to the mappings described in

Section 7 of the present paper. These are under investigation at
present.
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