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Abstract

This report has two purposes. We illustrate in a specific
fashion how the Theory of Crystallographic Groups in Three Dimensions
(Space Group Theory) works in practice. We introduce the idea of a
state function, or eigenfunction, cf a physical system. After a brief
review of the structure of space group irreducible representations it
is shown how states of physical (crystal) systems can be classified
using the Lemma of Necessary Degeneracy. The derivation of space
group selection rules is shown, based upon the deccmposition of the
tensor product - the Clebsch-Gordan series. Application of selection
rules to the analyses of actual physical processes is illustrated on
the Germanium crystal (diamond crystal structure space group Fd3m:0;).
Electronic and phonon types of processes are analyzed in practical
cases. Then we introduce and discuss two different themes. Config-
urational instability of the entire crystal against spontaneous dis-
tortion of the high symmetry space group, which is the space group
generalization of the Jahn-Teller Theorem. A conjecture is presented
that accidental degeneracy in crystals may be a consequence of a
higher (dynamical) but hidden symmetry. The higher symmetry is con-
jectured to be that of a crystallographic space group in higher (per-
haps four) dimensions.
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1. Introduction

This report is intended as an introduction to applications of the
group theory of crystallographicspace groups in condensed matter physics.
The emphasis here will be on group representation-related matters: rather
than on the abstract structure of the crystallographic groups. We discuss:
the structure of the irreducible representations of space groups and the
classification of eigenstates of a physical crystal system by use of repre-
sentation theory; the decomposition of the tensor or Kronecker product of
two representations and use in obtaining selection rules; the application
of selection rules to the analysis of physical processes - both electronic
and lattice vibrational (phonon mediated); and certain specific illustra-
tions in diamond structure with applications to processes and eigenstates
in germanium crystal. We conclude with twe less investigated topics: on
the configurational instability of the entire crystal (space group Jahn-
Teller Effect); and on a conjectured relationship between "accidental”
degeneracy in three dimensions and higher symmetry - such as due to a four-
dimensional crystal space group which "covers" the manifest three dimen-
sional system.

Many of the topics treated here are discussed in greater detail in
my book "Theory of Crystal Space Groups and Infra-Red and Raman Lattice
Processes”, published as Handbuch der Physik 25/2b, Springer-Verlag (1974);
and revised as "Spatial Symmetry and Optical Properties of Solids"™ - Prost-
vanstvennaya Simmetriya i Opticheskie Svoistva Tverdicha Tel' - (Mir Pub-
lishers, Moscow 1978). Other relevant literature will be cited in the
Reference section.

This article has been written to be accessible to an interdisciplin-
ary audience such as participated in the ZIF Conference, including chemists,
crystallographers, mathematicians, and physicists. I hope I have been able
to give enough of the "flavor® and "charm" of applications of crystallo-
graphic group theory in condensed matter physics, as well as specific and
detailed illustrations to encourage further work by scientists in these
many disciplines. A complete survey of all applications is impractical so
I have made a selection, but by following a chain of references the inter-

ested reader can gain access to the wider literature.
A general reference for this report is my Handbuch article referred

to above. Owing to limitations of space certain topics could only be
treated in an abbreviated form here - a more complete treatment is given
in this reference. The reader may find it quite useful to liberally con-
sult this work. Additional literature is given in Sectiom 15.
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2. The "State" of the System: Classification by Representation Theory

We propose at the outset to adopt a view of the state of a physical
system (such as a crystal) which is quantum mechanical, in orientation.
Thus we take the state of a system to be described by some “"state function”™.
In practice the state function employed here is a

- Schrodinger electronic eigenfunction ¥(X), or a

- Classical normal mode eigenvector [ &), or a

= Schrodinger vibration eigenfunction which depends on normal coord-
inate @, of the vibrating ions.

Each of these objects is some function over the complex field of the
coordinates r of the entities comprising the crystal, such as electrons,
ions, atoms.

The state function may also refer to many different types of elem-
entary excitations of condensed matter (crystals) in addition to phonons;
such as: excitons, polarons, polaritons, magnons. Symmetry can be applied
in all these cases.

The state function will be taken as a basis (representation module)
upon which a representation of the underlying crystallographic symmetry
group is constructed. Representation theory permits:the classification of
states (or state functions), the assignment of a symmetry label to the
state, and analysis of transition processes between states caused by applied
perturbaticns: thus selection rules arise.

Some mathematical/physical objects of interest are:

a) The symmetry group of the physical system G_, which is the set
of isometries or symmetry transformations {g)} of the system. Each g pro-
duces a coordinate transformation in the physical space according to the
rule

e

+l
gr=r

In a more usual notation with g = (¢|{)

(4|81t = ¢x + T

The homogeneous part ¢ is generally an orthogonal matrix (rotation or re-
flection) while the inhomogeneous part t is a translation. Then G_ is one
of the 230 Schoenfliess-Federov groups if we ignore additional degrees of
freedom, or a Shubnikov group or color group if we include magnetic or
other degrees of freedom. We often call Gg the group G.

b) The unitary representation D over the complex fidld of G_. We
take D as already irreducible or as decomposable, by Maschke's Theorem.
Note we shall take G_= G to be a finite group: i.e.:hyusing ’
periodic (Born-v Karman) boundary conditions we finitize the crystallo-
graphic space group. The elements of D are the unitary matrices denoted
Dig) .



- 134 -

c) The state function, or eigenfunction, of the system denoted
0(;). In case of "degeneracy" theres is more than one state function as-
sociated with a given eigenvalue. We denote the set {§(r)} and label
individual partner members Op(;), affixing other representation indices
as needed.

d} The function transformation operators Pq associated with element
g. The set of sucf operators forms the group Gp homomorphic to Gq' The
action of P_ on ¢(r) is g

+

P w(E) = V(™).

e) Por a set of "degenerate" eigenfunctions {iu} we have

+ -
Py ¥, (E) = E D, (g} ¥, (r)

=¥, (a5

Consequently we assert that a set of degenerate eigenfunctions is
a basis for representation D of G. This assertion is a consequence of the
completeness of thesaubspace of degenerate eigenfunctions at some given
energy E.
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3. State Functions and Energies

Two examples of eigenfunctions are: first the solutions of a one-
electron Schroedinger Equation for the motion of a single electron in a
perfect crystal. This is

Hy = (T +V) v = Ey

where T is the electronic kinetic energy operator, V is the electronic
potential energy operator, E is the eigenenergy and ¥ the eigenfunction.
The kinetic energy T for one electron is simply —Vz, while V(;) is a peri-
odic function V(Z) = V(T + ﬁL) where ﬁL is some lattice vector. The %, de-
generate solutions of this equation may be denoted

3
¢u (r) u= 1"“;m

>

with k a member of the set {iu = ¢“k1} called the star of K:

O DR S
kfﬂztﬁ,ﬁnn&)

+
where i is the star of ;, and each of the functions ttj is a "Bloch Func-
tion". The energy is

Ej (k)

where k is the wave vector (E‘il and the index j is a band index which
labels the "energy band", or allowable irreducible representation. The
function E (ﬁ) may be viewed as a "gquasicontinuous™ function of wave vector
K, since the k are dense, and constant E; defines an "energy surface" in
the three dimensional k space. The individual points on this surface
labelled by individual k are physically allowed energy states.

Thus allowing for degeneracy we can rewrite the one particle Schroe-
dinger Equation as

P i,
mold = By o

where it is understood that K is a member of the star *k. The index 3
refers to allowable irreducible representation. The eigenenergy Ej(f) is
independent of the index p of the partner function.

A second example of an eigenfunction arises in small amplitude
lattice dynamics of crystals. Call the instantaneous position of the atom
at position (tx)} in the crystal - cell £ basis atom x:

P(LK) = I(Lx) + U(Lk)
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where f{nz) is the equilibrium position vector and G(EK) a time dependent
displacement,

In the harmonic (Hocke's Law) approximation the classical potential
energy of the lattice is bilinear in the components of the cartesian dis-
placements

v=1/27 u
ale
Re'k!
The kinetic energy is

ik} @ (EE';Kﬁ']uB(E'K')

a( of

T 172 T M6 (e’
akK
It is impeortant at this point to transform variables from the independent
set of cartesian displacements uu(nx) to normal coordinates Q(Ejv):

-1/2 ik-R
a (e = w27 et

=, 0
L e L e“(r\kjv) Q(k]v]

The gquantities eu(rlijv) are the eigenvectors of the dynamical matrix
DuE [i: x¥x'), which is defined as the Fourier transformed force constant

matrix:

>
i Vet omike R -R ) -1
Dyg (Kixx 't = 15' b, (82 kK" e R-R MM )

In these expressions @as(ll‘;xx'] are the elementary force constants (der-
ivatives of the potential energy) M, are ion masses. The dynamical equa-
tion for the eigenvectors can be written

(DE ] ek )] = w?(Ky) letki]

We have compressed the notation in writing this equation. To recover the
full matrix expression take matrix elements and use an obvious convention
on the indices. In this equation

w? (k4)
is the sqguared eigenfrequency (which corresponds to the energy of the
Schroedinger problem) ,

le(ki,)1]

is the eigenvector whose components are en(xiijvl. Evidently [e(ij“)]
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£y
corresponds to the Schroedinger eigenfunction wukj. The eigenvector has
3r components at fixed wave vector k, where r is the number of ions in
the primitive unit cell. The index v refers to degeneracy. In phonon
problems the index j or jv*refera to the "branch" index. The frequency
surface in wave-vector or k space is given by m(Ej) = constant. Ifwv> 1
there is degeneracy which implies a touching or coincidence of two branches
at that K.

In a quantum mechanical treatment Q(Kjvl is considered as a gener-
alized coordinate. The Schroedinger eigenfunction of the lattice is a
function of the Q(ﬁjvi. The classically determined symmetry properties
of the normal coordinates Q(iju) are taken over to the guantum theory.
The guantum lattice eigenfunction is a generalized "many harmonic oscil-
lator" function consisting of a product of a Hermite polynomial in the
Q(ﬁju): times a "Gaussian" factor in the Q. This increases the
complexity of calculation, but can be straightforwardly incorporated in
the analysis.

4. Symmetry and Degeneracy

Consider the electronic energy band prcblem: motion of an electron
in a crystal governed by a Schroedinger Equation in which the po-
tential energy V has the full symmetry of the crystal. That is

pq\r(?) : vig i) = v(D)
Here g is an element in G. The rotaticnal part ¢ of g is an orthonogal
transformation and t is a constant translation, clearly the kinetic energy
T also has full symmetry

pqr(f) z rig™) = ()

But H = T+V is considered as an operator in the space of eigenfunctions
¥, so it is usual to write

HY(F) = BV (E)
and then consider symmetry transformations on the operators
-1

P_HP P
g9-d q¢ 9

]
m
o
<

- -1x,
P, H Pzl = H(g T} =¥
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by symmetry. Then
- +
H Pgw{r) =E Pg¢tr)

Consequently if ¢ is an eigenfunction, Pgt is an eigenfunction at the
same energy E. It follows that the set

(v, Wq B Pgw. Wg. = Pg.w.----l
are eigenfunctions at the same energy E. If among the members of this
set several are distinct, then degeneracy exists: distinct linearly inde-
pendent eigenfunctions at the same energy E.
Vie gather the linearly independent degenerate eigenfunctions to-
gether into the linear vector space

12 evz b, 4 Ogecenr Y =g, >
Iy 2 n 1m

It is useful to take g, = e the identity of G. It is clear that isa
linear vector representation space for G. Apply ?g to i. treating | as a
column vector, then:

B J=D(g) |

where D{g) is a i dimensional matrix, labelled by elements 9y G
Evidently, if 99, = 9p

Diq) = & ~-1

ba 9,09 9
It is easy to verify that D(g) forms a unitary representation of G. Since
G is a finite group, D(g) is equivalent to an irreducible representation
or a decomposable representation. For simplicity we assume that we have
taken correct linear combinations, (i.e. a similarity transformation has

been made) and | is irreducible under G or G

B
A similar result obtains in the case 9 of lattice dynamics. The

basic force constant matrix [¢) whose elements are ouatll';xx') is invari-
ant under a symmetry transformation Pg' This can be expressed as the
matrix equation,

-1 _
Pg[@lpg %].

Passing to the dynamical matrix which is the Pourier transform of [¢] we
find
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2=l > -
Pg[D(k)]Pg = [D(¢K)] = [D{ky )]

¢
where ¢E = i¢ is the wave vector, K rotated by the rotational part of g.
Evidently there are two cases to consider: E¢ equivalent to 4 (modulo a

reciprocal lattice vector) or E¢inequivalent to k. These can be denoted
as

ﬁ¢ s k ana i¢ i 4 respectively.

Consider the first case and the set of all g with property that their as-
sociated ¢ parts produce the stated eqguivalence. Call these dye--er 9

+++. Clearly the set of these is a group denoted Gti). Then if g, is
cne of the set 9, € G

- -1
an[D(k)] Pga [o(k)]

so that

-1 e} o 5

P (p()] PP k =

g, BB 2y B, [e(Ri3] = (%3 %, fetki, )

It follows that P [etijv)] is an eigenvector with the same squared eigen-

frequency wz(ijl. e gather the degenerate eigenvectors into a linear
space:

= N Fa
I= <[e(i3\,:1....-(egu[k;vn,..>

The space E is a basis for a representation of the group G(ﬁ). Choosing
the correct linear combinations we may assume this space is irreducible
under G(i).

For both the electronic andé the lattice dynamic problems then, the
existence of a symmetry group implies degeneracy: the eigenfunctions or
eigenvectors are bases for irreducible representations.

5, Irreducible Representations

A brief review of the structure of space group irreducible repre-
sentations will be useful and will permit a connection with the physical
results just given, and alsc with the review given by Prof. Cracknell in
these Proceedings. Let T be the normal subgroup of pure lattice trans-
lations of G. The factor group G/T = P is the "crystal class” or the
"point group of the space group”.

We reduce T by finding a complete set of Bloch functions ¢E. Let
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elements in T be denoted t = ¢, £ys-..t ... where another notation for
tL is §L (a lattice vector in crystal space). The corresponding function
operator P has the action

PLU(E) = w(E- ).

Then for the Bloch function wk:

K

. = ’
Bt (D) = WF @G = SRk

4

k ai
= D {t)¢ (r).

Here Dk represents the translation irreducibly. The set of all k which
produce inequivalent irreducible representations span the First, or Reduced
Brillouin Zone. Hence X is defined mod 2% times a lattice vector in the
reciprocal or dual lattice (ZIIEHJ . The wave vectors k may be regarded as
quasicontinucus.

The group G can be decomposed into cosets with respect to T as

G=T+ 9, T +...+gp T +...gh P

Coset representatives gp are in general of the form

9p = 1Y)

where T_ can be a fractional translation for a non=-symmorphic group, and
¢p is the rotational part of gp. =

To complete the reduction, select a k in the zone and determine
the orbit of kK, or the stax:'i. by applying to %- all the rotational parts
of coset representatives GyreseGp- The set of inequivalent (mod 2158)
wave vectors k are *k. Then define the group of the wave vector k dencted
G(K]. It is the stabilizer of 2, and is also a space group. Determine
the complete set of r allowable irreducible representations of G(il. These
are denoted

*>

okm

m=1,...r

Ip*®| = ¢
m

Then DEm are allowable because when this representation of G(i) is re-

tricted to T it subduces correctly:
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>

DKM of Gy ¢ OF of T (2, times).

Recall that 6; of T associates Eii-? to each £. 1In practice DEm may be
found by determining the projective repre§§n;ations of G(i)/r = p(kR)
with the correct factor system, e.g. r = Akl little group method
may alsc be used. These matters are more completely discussed in Prof.
Cracknell's lecture, my Handbuch article, and other references.
It is very useful to define a "dotted" matrix
+
) im(q) = ka(g) if g € Gk}
=c if g £ (%)

Here 0 is the null matrix.
Using dotted matrices we induce the full irreducible representation

-
of G from that of G(k). Let the full irreducible rgpresentation be denoted
®
D . Label the bloc row and column matrices in D
>
*
b km(q)01

where bloc subscripts ¢ and 1 refer to wave vectors in *k:

+ _ » . >
k= ek k= ek
Then the standard induction procedure of Clifford gives for the bloc ma-
trices

> &

_ pkm -1
D el gp = DG, 9p9,)

Each of the elements g, gp, 9, is the relevant coset representative in G

decomposed with respect to T. In summary, the full irreducible represen-
*

tation D' ™ has form

%m
ol o
p*km gy = 0 0 pka™
5

where eagh bloc is either the m dimensional null matrix or the m dimen-
sional D™. The dimensionality of p'E g (st ) = star degeneracy x
local degeneracy.

It is obvious but nevertheless important that pure translation is
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represented by a diagonal matrix

iK€
* e 1 O Q \
pkm ey o m R
O a2 o (@]
m,
o) o |

where T is the m dimensional unit matrix.
Later we discuss the Kronecker (Direct )product of two such repre-
sentations and the decomposition of such a product.

6. Necessary Degeneracy and irreducible Representation

Returning to the eigenfunctions previously discussed we now remark
that the electronic eigenfunctions will be a basis for the irreducible
representation of G. This assertion partially follows from the decompos-
ibility of the representation D(g) introduced in section 3. However, an
additional and essential Ansatz is needed which we dencte as the Lemma
of Necessary Degeneracy: each eigenstate corresponds to an irreducible

representation of G.
Call the eigenfunctions

s
(WUkKJI

where iT = ¢1i is contained in *k, j labels the allowable irreducible

representation and v refers Lo the partner function in the &, dimensional

irreducible representation DKTJ of the group G(ET). Then the effect of a
symmetry transformation by operator Pg is

Rid *Kj i3
L UE DG (G vy W

)
This expresses the fact that the set of degenerate eigenfunctions generates
U‘kJ. Corresponding to these eigenfunctions are the electronic band

energies:

k) = E. = ... =k, (k
E. (k) EJ(E‘)) 5 kg

Note that, at given ke 'E, each band energy is repeated L. times to take
account of the 2j fold degeneracy at that 4 resulting from the fact that
aim %) = 25
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Likewise, the eigenvectors of the lattice dynamic problem may be
transformed as

(du)(ruilE(koju)]

P letk 501 = § o'Figg)
LA o
Necessary degeneracy in this case means that the set {[e(ijv)]} are a
basis for irreducible representation of G. Lattice waves have character-
istic symmetries according to irreducible representations p™*d of G,
It is also useful as mentioned above to introduce the notion of a
phonon, which is the quantum elementary excitation corresponding to the
normal coordinate Q(Ejuj . We preserve the transformation properties under

P :
g
po® i) = 1 oFig QR 5)
q rJu = o 9wy (1) 50y
The individual normal coordinates transform as partners under D.EJ. Poly=-

nomial functions like i (Q) of the Q(kj ) transform as appropriate tensor
s
products Dngl 5
The essential point is that using the existence of symmetry elements
and the symmetry group G the eigenstatcs of the electronic and normal
mode lattice vibration problem can be strictly classified according to

irreducible representation and partner function.



- 144 -

7. _Examples of Classification of Eigenstates

ln order to clarify and illustrate the points just made we present
several fiqures which exemplify the kind of analysis we have been discus-
sing.

In Fig.l we exhibit the diamond structure unit cell, The space

Z 7
4roup is Fd3m=0h. Trhe tetiranedral corfisuration iz shown.

Fig. 1

In Fig. 2 the Reduced Brillouin Zone for the face centered cubic
Points of high symmetry are indicated: for such points

group is shown.
This cell is the "Fundamental-

> 5 s
the little group G{K)/T is nen-lrivial.
or Voronoi cell in the reciprocal {or dual) lattice.

[11]

bereich”

Fig. 2
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In Fig. 3a we have exhibited the orbit, or star of one wave vector of

high symmetry: this is W. (See Fig.2). Note the 6 arms of the star.
ig.3a Fig.3b

STAR OF W

¥, = (2v,0,9)(1/n)

RAYE VECTGR SELECTION AULE
Product of Twa Stars

-
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In Fig.4 we exhibit a section in the reciprocal space showing the
trace of the eneryy surfaces for various enerqgy bands in germanium - a
diamond structure crystal. Wwe plot Eth] for different bands j.

The energy bands shown are near the band 'yap% and each band carries
the relevant symmetry label - the label applies to the high symmetry
points. It should be recalled that a symmetry index j changes significance
when K and Gk} chanue by, for example, wassing from some general point
on a line to a "special" point such as the end point of the line, since
)] refers to the allowable irreducible representation of that G(ﬁ). How-
ever, compatibility conditions exist restricting the connectivity of rep-

R Foge L. e 4 ,
resentations - connecting D ané D if G(k') € G(k). Such relations
permit one to define all the states of one band in a consistent fashion,
satisfying the compatibility conditions and permitting Ej(E) to be an

3
essentially continuous function of k.

ELECTRONIC HANDS IN GERMANIUN AND PROCESSES

g (1)
.I.“'

Tig. 4

. -
% _/7 oy

* 4

1. lIodirect gap process {pbotom + phomon).
2. Dirsct gap process {(photon).

3. Iotervalley scattering (phonon).

In Fig. 5 the phonon dispersion spectrum of a typical diamond
structure crystal is given. The sections of wj(E! are similar to the
. (k) of e¢lectronic band theory, and in a similar manner one branch can
be defined irrespective of the changed significance of index j when k

moves to a high symmetry point.
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PHONON SPECTRUM O

0 rl’h) ™
* (3-) = (4)
L x Fig. S
* (1e) o 10
* (20 * (1)
LA %3
Ay ()
(3+)
‘L T~ - TA
ATES|
[

Tt should now be apparent that the eigenstates of crystals can bg
and are strictly classified according to irreducible representations D. il
The astute observer will note that at certain points (see the upper two
branches in Fig.4 along line I'-X)lbands cross at some point which is not
higher symmetry than adjacent point. The crossing produces, at that point,
a higher degeneracy than required by the allowable irreducible D 3, 1

that case "accidental" degeneracy is said to occur. We return to the
possible symmetry-related significance of such "accidents" below. But
here we stress the point that the Lemma of Necessary Degeneracy applies
"almost everywhere® in the Brillouin Zone: exceptions being generally
isolated points.

A final observation worth recording is an illustration of the atom
displacements in a particular normal mode. We choose the optic, Raman
active, mode of symmetry ['25+ in diamond. The displacements illustrated
below in Figure 6 indicate * [111] direction motion of each of the two
inequivalent atoms (at 0 and at TYin the unit cell.

Fig. 6

Ymm e
|
I
I
al
|
|
|
|
|
|
3
]
]
-
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3. Transition Processes in Crystals

Using standard first order guantum-mechanical perturbation theory
(Rayleigh-Schroedinger) it is easily established that the rate of trans-
ition from an initial state ¢{i) to a final state w(f) caused by a per-
turbation operator which we denote 6 represents in general the perturbing
cnerqy caused by taking into consideration some external force (electronic,
magnetic, strain) or some ddqizzona] interaction not previously included
in the original Hamiltonian N, ﬁ gives rise to the system eigenstates
+(i), ¢(£f), and the perturbation B may be viewed as causing transitions
between such states.

Selection rules arisc by investigation of these matrix elements.
We use the term selection rule toﬁdenote:

Necessary vanishing of <f|0|i» caused by symmetry:

“flojir = 0

Equality of apparently distinct matrix elements caused by symmetry:
agr]ar|its = <flofis.

Generally selection rules arise because w: is a set of degenerate

eigenfunctions and the set is a basis for irreducible representation pt:

(31 -~ 0" of G
b
i y £
and likewise for 4 :

£
Hi - ofor s

The operator O itself is generally a quantity which transforms under the
symmetry operations of G as some representation DOP; denoting the compon-

ents of O as 0, we write

{0.1 - b of G
Then the matrix elements qoverning transitions from one of the degenerate
manifold of initial states th]. to one of the degenerate manifold of

final states (hgl are the set

ﬂfufoxfiux
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9. Generic Wigner - Eckart Theorem

The generic Wigner-Eckart Theorem concerns the matrix element

m*
a

<me|ng> = ] " wg dr
where
{4, + Mot g
+ " of G
we assume D™ and D" are irreducible.
It is easily shown that the value of this integral is:
<ma|n8> = c S L

Here

3 =0 unless D™ is equivalent to D"

mn
(i.e. unless vo™ vl = p™)
6&8 = 0 unless a = B

Cm is a "reduced” matrix element,
independent of a and 8, but depending
only on the representation index m.
A completely equivalent way of stating this result since G is a
finite group, is that the matrix element <ma|nf> = 0 unless
p™ @ b contains DY the trivial
(identity) representation of G.
The tensor (Kronecker) product is denoted 8.

It then follows that
<fu|0k|iu > =0

unless the decomposable representation

Df' L] Di contains p°P.
That is if the tensor product DE‘ a Di representation, when reduced, con-
tains a representation in common with D°P some of the matrix elements of
the sget < fulolliu > are different from zero.

All the ingredients needed to carry out this analysis foy crystals
are now in hand: initial and final e@genscates are of_the type w:j, span-
ning irreducible representations D‘ 3 the operators OA can be analyzed
using the standard procedure to determine to which irreducible represen-
tation they belong.
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10. Reduction of the Tensor Product

The set of initial eigenstate basis functions can be denoted

kn

5
liw>: Gy g

} D

the set of final eigenstates basis functions can be denoted
T, -

[€v>: wt." Yoy G I

The basis for the tensor product

i R lgn
D'km anD & 'm

is the product space consisting of the set of all bilinears
. . . .
E"‘ ~p§ LA w"o"' qri.u"‘ cae ¢Es“ vi s"’ }

There are (sf ) (s'2' ,) such bilinears. To avoid notational confusion
‘mt

we do not put in the conjugate complex for D n

inserted as needed.

although it is easily

In order to completely decompose the tensor product into irredu-
cible components we first determine which representations appear by finding
"reduction" coefficients. These are the positive integer (or zero) coef-
ficents in the Clebsch-Gordan Series. We adopt notation

*
= @ (*E'm'*km[*K"me) DK™

and the reduction coefficients

(*K'm' *Km|*K"m")
s
S e
Let us now suppose we know which D ™ do appear in the reduction.
To complete the work we need to take the next step and determine the correct

give the needed information on the appearance of D

linear combination. That is if D m" appears at least once then, from
g
the bilinear products we can construct the basis of D ™. wWrite the
correct linear combinations as
‘ll " i .
L ) § (koukrortut k" umy x wEnm wz.o'“
k too ') (uu*)

where the coefficients
(Keuk"5'u' [K" u*)

are Clebsch Gordan Coefficients. Remark that if the elements

tﬂouk at u'Ik' u") are suitably assembled into a matrix U, then U similarity
transforms the direct product into fully reduced form:

Eim

v L™ ™ g p ) Uu=3%
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Here & is fully reduced

'
|0 u\
i - 1
0 |- 0o

— S
A 334 L

with the null matrix outside the main diagonal. The case of multiplicity

e : ;
(some of P © ™ pccur more than once) requires some technical care, but
is in principal solvable and in practical cases where the CGC have been

evaluated, multiplicity has been accounted for.

Let us now give some concrete steps which are useful, and have
been used, for the reduction of Kronecker products. We need to consider
ordinary Kronecker products such as:

: afusgn
2D =en ¥,

Tt may appear that the reduction, is impractical since one must
AL am
search through all possible resultant D %3 + i.e. all irreducible repre-
sentations of the space group G. But wave vector selection rules save

the day! That is, in all cases the first step is to multiply the stars
(orbits) and then decompose the tensor product into complete stars:

ke otk =@ k"

Another way of writing this is in terms of the wave vector reduc-
tion coefficients

The direct product of two orbits is defined as the set

K@ *K' = Ok + k1R ook, K7, o)
We thus determine which orbits, or stars, appear in the reduction. Remark
that this first step is really the reduction of the diagonal matrices
representing pure translations: the form of these diagonal matrices was
given above. Tt is a simple exercise to verify that the wave vector sel-
ection rules express this reduction. For symmetrized or antisymmetrized
products of representations we again begin with the relevant wave vector
rules which are the natural generalization.

Let dim 0%} = ¢,. Then for 0'KJ the symmetrized cube wave vector
selection rule becnmes:)



; 3r§(t£: B (226 + 2:];3£;|

whore *k *K *k =

otk R LR

sponding symmetrized wave vector roduction cocfficicent is
g i A = E ValEmy kR
l‘) k) i l(tj Klg) :*k") *k

¥e remark here that in all the star-product reductions, complete stars
occcur in the fully reduced form. This is cvident since only complete
irreducible rcpresentations occur when a decomposition is carried out,

after the first step of the reduction has been carried out, the
reduction can now be completed. If it is known that some star (e.q. wkn
oecurs then attention may be restricted to determining which of the
allowable 3" ovccur. This is a much more restricted and thus solvable
problen.

Now we outline the methods we developed for completion of the
reduction. The method of Linear Algebraic Rquations always works to de-
termire the reduction cocfficients. Denote the characters of the irredu-
cible representations

1‘kjiq} = Tr D,kjig)

Then the characters satisfy the equations

*’ Togr - - - ‘*n'n
YR R ) = T erEgeReg R

wRuge

The left hand side of this egquation is known since all matrices and there-
fore characters are known for cach of the participating irreducible rep-
resentations. Assuming the dimensions of the Factors are: dim n‘kJ =sf.;
dim D* 3 . §'0'_,; etc then the total dimensionality of all representg-
tions which will ocecur in the reduction is (ss')(ijk’j.)- Viewed as
linear algebraic equations for the coefficicnts

“"Ej"g'j'hi"j"),

we obtain at most (ss'}(%.%.,} equations by selecting this number of
elenents g ¢ G, which give rise to distinct equations. In most cases

Then augment the factor groups according to

G/Ny - Ny/Ny" - G/Ny"

G/N_, * N N
y 1 Myn G/N
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Call the Reduction Group

Rz G/N_.
4 ¥
It is the coscts in G/T augmented by pure translations. The set of matr-
ices
- @ =
*jk 4 BE *jpmm
o™ (qy-,0™F "3 k"3

I(g). D {g) : geR

is closed. The reduction group works because the expression derived from
character orthonormality is now quite manageable. In practice the order
of R is a simple multiple of the order of P = G/T:

IRl = n o l6/m

In a purely formal sense the reduction group method has certain
similarities to the Enlarged Unit Cell procedure introduced by Prof.
Koptsik to deal with imperfect crystals,

A final practical method we used to carry out the reduction is
based on the construction of a Projection Operator (member of the group
algebra). If we know that *k" s present, from the wave vector selection
rule, we may test the bilinear products by attempting to project out
different allowable j”. That is we construct the projector pk"3"

CAT LI S T LU L
P (o7 $.0'0) =

-1 L P, A S
Jc/ny 5 & (g) Fotysed wiiotd,

g

As j" varies through the allowed cnes, for fixed aa' if one obtains a

non-zeéro result the j" will occur. Permitting wa' to range throughout
all possible values will then determine all multiplicities and all j"

which can arise.
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1. Selection Rules and Physical Processes

Recapitulating, we have now obtained the complete set of reduc-
tion coefficients for the reduction of the tensor preoducts of any twe
space group irreducible representations; so we know which D.k"j“ arise.
How is this used for analysis of physical processes?

Recall that the amplitude for the rate of a physical transition

process is governed by a matrix element of type

ffuiohiiu> 3

We have reduced the product

. s o
of @ p* + p'K'1" @ p™Kd

into components
*krgn

A necessary condition for the matrix element to be non-zero is if the
perturbing potential energy operator denoted Ol has symmetry of one of
the components which occur in the reduction:
>
~ e
p*k"i

%'b

To illustrate, see list (Table I) of certain generic types of physical
transition processes and the operators pertaining to them. This part
of the work has been discussed in some detail elsewhere in the theor-
etical physics literature and we must simply take over needed results
in an ad hoc fashion. Specific illustrations will be taken from the
Germanium crystal whose space group is the diamond O; type. Recall
Figures 4 and 5 in which electronic band and phonon dispersion curves
were given respectively.

In Table I, W'ij> refers to the electronic state with symmetry
Q(*ﬁ"j") refers to a phonon (quantum) eigenstate of symmetry

; symmetrized products are so indicated. The operator 3 is also

indicated. Now, referring to 0; space group we determine the symmetry
of each operator. We use a conventional notation for the irreducible
representations j of the G(Kl. Then

Y ris- (6(r)/T = o)

[2}: Ti+ @ I'l2+ @ r2s @ (G(r)/T = Oy}
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(a}

Table I
Process Matrix Element
A. Electronic
Interband Optical Absorption kg | V] %>
Interband Scattering <i'0.j'|0(i'j')|iaj>
{1 phonon}
ki, % £ oK
Intraband Scattering <on|0(i'j'l[i1j’
{1 phenon)
k, &, ek
B. Vibrational
Optical absorption <Q{'ij]|§|n>
(1 phonon)
>
Optical Absorption <a(*k'j"10(+k5) |¥]o>
{2 phonon combination)
oOptical Absorption Q*k) (5 ¥]0>
(overtone}
Raman Scattering Replace O " ¥ by
0~ fdl)
in above 3 lines
C. Configurational Instability
Phonon mediated set: (& jle®"3") [k 3>},
v LEL]
or ki (5 laknim)>

lalSee my Handbuch article and references for more complete details.
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I*Ej >: Symmetry of electronic band eigenstates as on Fig.d
Q(*kj): Phonon symmetry D'rkj as shown on Fig. 5
in principal directions.

In order to satisfy the necessary conditions for non-vanishing
matrix element, the wave vector rule must be obeyed. Thus if an inter-
band optic absorption mediated via 7 owill occur, *k @ *K' must contain
f: these are vertical transitions., 1In Fig. 4 such a transition is
labelled (2) taking an electron from *X1 + *X4 in an interband trans-
ition mediated by a photon (operator .

An example of a wave vector selection rule is given in Fig. 3b
showing *L @ *X = J *L. Such rules lend themselves nicely to geom-
etrization. Some other wave vector rules for 0; are given below:

Wave Vector Selection Rules
Ordinary

*X @ *X = 3r @ 2 *X
(Note since ij are all = 2, this must be taken as 12T @ 8 *X)

*L @ *X = 3 *L

(but all Rj = 2 for X; =1l,or 2for L; modify accordingly) .

2.
%
symmetrized
(zj =2 all cases for *X)
*X(gy = 9T @4 *x

‘L(S) = 30 *L

The remainder of the reduction of the tensor products is to
find the j", which occur. This also has been carried out and results
are tabulated. We can cite and use the relcvant results. Again refer
to the Figs for clarification. We shall now give physical
selection rules appropriate to the generic types of processes illus-
trated on Fig. 4 . Also we shall give selection rules for optical
excitation (absorption or scattering) of one or more phonons. Tt is
to be understood that each point on each branch of the phonon disper-
sion curve, Fig.5 is a possible lattice vibration eigenstate: the
high symmetry points are labelled and lower symmetry regions are given
a branch indexing: the full irreducible label is given also for these

branches.
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Selection Rules:

Table I1T

(a)

Processes in Ge

A. Electronic

Interband Absorption 725+ + |'2- Allowed
{direct gap: vertical *L3= » *L1+ U]
*X4 o+ *¥1 S
Interband Scattering
(electron 1 phonon} ra- =+ *Ll+ L2- (LA phonon)
{hole 1 phonon) r25+ + *L3- L2- (LA phonon) and
L3~ (TO phonon)
(electren 1 phonen) *X(1)+ *L{1+) Lj (all L phonons)
Intraband
{"intravalley" L1+ =+ L'1l+ L1+ (LO) or
electron 1 phonon) L2- {(LA).
(Omit T modes).
2. Vibrational
Optical Absorption Excite I'25+ Forbidden
{1 phonon)
Optical Absorption Excite Allowed
(2 phonon combination} *Lj+ @ *Lj'- Optical
Optical Absorption Excite (2) I25+ Forbidden
(overtone) (2) *Xx3 L
Raman Scattering Excite 25+ Allowed
(1 phonon)
Raman Scattering Excite (2} T25+ Allowed
{overtone) (2) *Xj a,

(a)

See my Handbuch article and references for more

complete details.



- 158 -

Examination of Table II shows that many physical processes can
be strictly identified by using these selection rules. In actual
practice these rules were used in conjunction with other experimental
and theoretical evidence in order to:

~locate energy states (bands or phonons);
-assign symmetry designation to these eigenstates.

Because this is a very elaborate program we refer the reader to
literature for detailed working out of this program for specific ma-
terials. A detailed discussion is given in my Handbuch article.

Let us summarize this part of our report by simply stating that
we have attempted to illustrate the theme

"Group Theory at Work in the Physical World".

12. Configurational Instability - Spontaneous Space Group Symmetry
Breaking
One of the most interesting and curious manifestations of spon-
taneous symmetry-breaking arises in molecules when one considers elec-
tronic and lattice displacement degrees of freedom simultaneously. The
idca for this phenomenon seems to have originated with L.D. Landau, who
suggested configurational instability to Jahn-Teller. The existence

of this effect in molecules has been amply supported experimentally.
The first extension to crystals was given by me in 1962 in which I
showed the configurational instability argument applied mutatis mutan-
dis to crystal spacc groups. Only two of the 230 Schoenfleiss-Fedorov
groups were examined: diamond Og—Fdlm and zincblende T;—FiSm structures;
the extension to all space groups was claimed. In this section we will
discuss this phenomenon in a manner equally applicable to molecules or
crystals.

We consider the physical system with non-trivial isometry group
G. Assume that C refers to the situvation where all the nucleii (atoms
or ions) are in their (average) high symmetry positions. The electronic
Schroedinger equation for motion of an electron in the self-consistent
potential duc to the other electrons and the stationery ions is:

H ug =) wg ;= 1,...iDj[

where H(r,R) is the Hamiltonian with ion posi:ien; R held fixed. The
isometry group G has irreducible representation p?. we take the ground
st§te electronic eigenfunctions to be members of the degenerate set
{wl}. As before, the necessary degencracy of the eigenstates is as-
snﬁmed. S0, symmetry produces the degencracy. Now we may ask ~ is
the system, with electrons in degenerate state, stable under small
deviations of the ions from high symmetry positions?
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Suppose ions are displaced from their high symmetry positions. Any
arbitrary small amplitude displacement car be decomposed into normal
modes. For each normal mode Q(j"a') present there will be a change

in the electronic Hamiltonian. Assume an expansion of the Hamiltonian
in a power series in the normal modes:

H(rR) = H(rR®) + | @HAQ(I ') g3 )+
g

We only show linear terms but all orders appear. The individual co-
efficients, such as (aHﬁiQ(j'q'))oare functions of the electron co-
ordinates r, but not of the nuclear coordinates, or normal modes
('a").

Now transform the system by element g€ G. lThe set of degen=-
erate normal modes transforms as representation Djl. Then terms

i DH/@Q\}"G‘)OQ(j'u')
il

transform into

BRCLYEIE A pl’ (@), ,0U'Eh.
But this can be considered as if the Q(j'B') are fixed, while the
coefficients (as function of electron coordinate) transform as the
adjoint representation to D]|. Taking all representations real, or
"physically real" we may take the set (BHﬁBQ(j'u'}}Oto transform as
o,

Our problem can be examined as a form of linear stability an-
alysis using perturbation theory. The initial set of electronic
eigenstates is (wi'}. The total Hamiltonian is

=8 (rr%) + H' = H(XRY) +
+ Z@H/JQ(j'ﬁ')OQ(j'ﬂ']

with perturbation H'. The perturbed problem we wish to solve is

and we assume the true eigenfuncticn is expanded in the set of un-
perturbed eigenfunctions:
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The new (perturbed) eigcnenergy is given as the solution of a secular

equation of the form

where

jafH'[f.> + gl

J ettt al 0HA IR glig> + B
L

1f the perturbed energy is of form

=g+ Ri Q(ita') + E%{Qéj‘u'))z FHE

then the initial configuration is unstable. For, if a term linear in

Q(j'a') is present a guasiforce

SIEAQUTET) T Py

will exist tending to distort the crystal from group G to the group

G' which is the image of DJ.. This is the origin of the "configura-
tional instability". The electron occupying a state wg, which is one
partner in the degenerate manifold iwil spanning irreducible repre-
sentation D]I, experiences this quasiforce tending to distort the
system from its initial high symmetry G to the group G' which is a
subgroup of G. Remark that the distortion will proceed until restoring
forces, due to the terms in E bilinear in the Q(j'a), produce a new
oguilibrium (whose symmetry is G').

Schematically:
Symmetry Group G -~
wecessary Degeneracy of Figenstates
+ Virtual Perturbation -+
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Instability -
Symmetry Breaking Lo G' »
Restoration of Stability,
A sufficient condition for stability is if there is no term in
E linear in Q(j'u'). But this reguires that all off diagonal matrix
elements H&B = 0 by symmetry, or

b 2 i 1+
D(Z) @D #D
That is the symmetrized square of b, the representation by which
the degenerate electron states transforms, contains no representation
Po— 2
in common with the phonon or lattice displacement representation pd .
Expressed in_ space group terminclogy we require of the reduction
*k A
cofficients for D(;? ap*'i’,
*% 5 CP L]
(( K3V gy *K'd irl+) = 0

The test for configurational instability in the electronic state

ity
k3 requires evaluation of this coefficient. Using the various al-

W
gorithms we gave above, the needed reduction coefficients can be found
and configurational instability in each eigenstate of the system can
be tested.

2

Td—F43m:

"Almost all degenerate electronic states are config-

We found that in o:—rdam;

urationally unstable”. "A consequent crystal dis-
tortion and splitting of the degeneracy are to be
expected”.

This result was established by examining by enumeration the re-
duction coefficients for irreducible representations with general
orbit (general 'ﬁ) as well as those with special orbit (high symmetry
*k lying on planes, or lines, or at points of special symmetry). Only
a few of the points of high symmetry were found to be stable. Thus
the use of the terminology "almost all" states are unstable.

The physical interpretation of this result is not as straight-
forward as in the molecular case. There, the electron in its degenerate
electronic state may contribute an appreciable fraction of the total
molecular binding energy so the destabilization due to configuration
interaction may be very significant. For a crystal one electron, or
even one single electron-like elementary excitation such as an exciton,
may only contribute negligibly te the total binding. Our theorem how-
ever as well applies to the entire crystal eigenstate of the many -
electrons should they be in a spatially degenerate state. These aspects
require further elaboration.
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It should be noted that a closely related situation has been
investigated recently. It is the "cooperative Jahn-Teller effect", in
which is interaction between localized degenerate orbital electronic
states usually of rare earth ions, and the crystalline lattice symmetry
is lost and electronic degeneracy is split, The relation between this
effect and our thcorem also needs elaboration.

13. A Conjecture: Accidental Degeneracy and Higher Dimensional
Crystallographic Groups

It seems appropriate to close our survey at this conference on
Crystallographic Groups with a conjecture about possible application of
crystallographic groups in higher dimensions.

Recalling Fig. 4 we again remark that in actual calculations of
eigenvalues such as electronic band Ej(ilcr phonon eigenfrequency m(ﬁj}
it is often noted that surfaces of constant energy cross when not re-
quired to by symmctry. A crossing or touching produces a degeneracy:
several eigenfunctions from different bands or branches have the same
energy. Such a crossing is called “accidental degeneracy".

It was at first believed that such accidental degeneracy could
be removed if the potential V(r) in the electron Schrodinger equation
were changed: v(T) - V(?J + &V(T), or if the force constants and thus
the dynamical matrix ID(E)I were perturbed: [D(?)]*[D(?)] + ﬂ[D(;)].
Experience shows that it is not always possible to remove crossings by
such numerical changes.

The investigation of the types of accidental degeneracy which
could occur in a crystal: removable and non-removable, and possible
relations to symmetry elements g sG[i}, where E is the wave vector at
the point of accidental degeneracy, was first given by Herring in 1937,
using a combination of perturbation theory and topological methods.

He gave certain specific results on the structure of the surfaces of
contact.

It is well known that in c¢ertain guantum mechanical problems
=such as the Kepler problem of a single electron moving in an inverse
square (contant) force field, or the isotropic harmenic oscillator,
accidental degeneracy occurs. For example, in the Kepler problem for
liydrogen atom with one electron in the coulomb field, the symmetry
group is 0(3) - the orthagonal group in three dimensions. The irre-
ducible representation of 0(3) are based on the surface spherical har-
monics metﬂ,t and the dimension of irreducible representations is
(22+1). But it is found by explicit solution of this Schrddinger
Equation
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-92 - e¥/r) v = By
that the degeneracy of a given level is actually
2 n

1
n o= {2i+1)
i=0

el

The explanation of this accidental degeneracy was first given by Fock
and Bargmann and has been since discussed thoroughly. The above
Schréedingerfquation can be Fourier transformed to "dual" space and
then the resultant equation can be recognized as a four dimensional
isotropic potential equation. The symmetry of this equation is 0(4) -
the orthogonal group in four dimensions. The irreducible representa-
tions of 0(4) have indeed dimension nz, and the bases are the correct
linear combination of the Ylm(a.¢) for different 2.

Motivated in part by these results,] conjectured that accidental
degeneracy in energy bands or phonon dispersion in three dimensions
was due to a "residue" of the hidden symmetry due to a covering four=-
dimensional crystallographic space group. Perhaps this is the residue
of a three dimensional array of bare coulombian potentials, whose
Fourier transformed problem is a four-dimensional c¢rystal group. This
direct approach of constructing such a model coulomb lattice and de-
termining any hidden symmetry of the resultant Schrédinger Equation
has not yet been implemented although I plan to return to it.

With Li =Ching Chen I examined a more indirect approach, which
could be, and was, solved in a straightforward group theoretical fashion.
Assuming the conjecture to be true we sought to examine consequences
for three-dimensional groups embedded as subgroup’ in a suitable four-
dimensional group assumed to be the hidden group of symmetry.

We considered the cubic crystal point group in four dimensions [45
of order 1152 which is a subgroup of the four-dimensional orthogonal
group 0(4). This group has a cubic subgroup de-
noted 47, of index 3 and in turn 47 has a subgroup of index 8 which is
isomorphic to 9, (3} the usual cubic point group in three dimensions.
We determined all the projective inequivalent irreducible representa-
tions of 45: this includes the ordinary or vector representations of
of 45. We then consider the compatibility of representations by sub-
duction

o} of 45 + & D' of 0, (3.

Recall that the allowable irreducible representation of G(K) are pro-
jective irreducible representations of G(K) /T. Consequently we may
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cxamine sticking of space group representations in oh(3) by studying
subduction of the point group projective representations from 45 to
Oh(3).

We found that when a representation from 45 split, on going to
Oh(B), the components p' were of different parity. Conversely repre-
sentations of different parity stick (touch) on going from Oh(3} to
45. A second general feature is that when representations of 45 split,
there was no multiplicity: a given p¥ only cccurs once. The latter
result implies, or is consistent with, the "no crossing” rule: two
states of the same symmetry originating from a particular eigenvalue -
eigenvector problem cannot cross as the potential is continuously
varied in magnitude rot changing its symmetry. These "no crossing
rules" are well known in both molecular and solid state crystal eigen-
value problems with the original theoretical investigation dating back
to Von Neumann and Wigner.

It appears that the one specific example which we studied - sub-
duction in the chain of subgroups 45 + 47 ~+ Oh(3l does not give a
result in disagreement with the conjecture that accidental degeneracy
or crossing of bands in three-dimensional crystal group theory may re-
flect a higher four-dimensional symmetry.

On this note of a possible application in three dimensional
crystal physics for the growing knowledge of crystallographic groups
in four-dimensional (or even higher dimensional) space I conclude this
paper.
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