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i O This is a shortened version of a talk given (April 1979) at the
University of Louvaine. It should have served also as basis for a sim-
ilar talk at the conference held in Bielefeld (September 1979), which,

however, because of my unability to attend, finally was not given.

The aim of this paper is to explore what can be said about phase
transitions on the basis of symmetry considerations alone. This cannot
exhaust the theory of symmetry changes in phase transitions. Group
theory does not contain a theory of phase transitions, but it helps.
It helps a lot. To see this, we shall discuss the consequences of two

almost trivial, but - as it seems - unavoidable principles.

The main question here concerns the relation, if any, between two

phases, connected by a phase transition.

It is necessary to make more precise the term of "connection". Ve
shall do this by somewhat restricting our problem to phase transitions
which may be discribed by using an order parameter. Two phases connect-
ed by a transition will then be a disordered phase and one of the
phases arising from it by some ordering. We know since L. Landau (in
fact already since P. Curie) that the symmetry group L of the ordered
phase is a subgroup of that, H, of the disordered one. Two ordered
phases belonging to the same ordered phase are not necessarily in a

relation of group and subgroup.

If presented with two groups connected by phase transition that
do not display such a relation, it is always possible - and sometimes
useful - to construct a group that contains the two as subgroups. If
the subgroup describing the ordered phase is the trivial group (so that

the ordered phase then has no symmetry) it is usually worthwhile to
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consider that the symmetry groups at hand represent the "true" symme-
tries of the phases only modulo some hidden symmetry; in the same way
the translational symmetries are hidden in the macroscopic properties

of a crystal.

Our investigation then is restricted to two phases that are in a
group-subgroup relation. A second restriction is that to subgroups of
finite index. We limit ourselves to these because we do not want to
eclipse the main ideas by the mathematical safeguards needed in the
case of infinite index. What does this restriction amount to ? This
depends of course on the type of symmetry group we want to consider.
If e.g. the symmetry group of the disordered phase is a space group, a
subgroup of finite index is a space group of the same dimension. It is
clear, however, that subgroups of infinite index are important in con-

nection e.g. with crystallization and incommensurable phases.

2. The first of the two principles we want to investigate is the
following : The group and subgroup (corresponding to a discordered and
ordered phase that arises from it) determine an irreducible representa-
tion of the symmetry group of the ordered phase. This is an important
part of Landau's theory. Two additional features : The stability condi-
tion (which is a necessary condition for the transition to be continu-

ous) and the homogeneity condition are not considered here.

Given a group H and a subgroup L, how can they determine ir-
reducible representations of H. Well, they first determine the per-
mutation representation HL of H afforded by L. This is obtained by
associating to he H the permutation that it induces (by multiplica-
tion on the left, e.g.) on the cosets of L in H. Because L 1is of
finite index (say n), the kernel of this representation (also termed
the core of L) is also of finite index. Thus the guotient H/K = G

is a finite group of order |G|.

The projection p:H—G of H onto G establishes a one-to-one
correspondence between those subgroups of H that contain K and all
subgroups of G. Therefore the permutation representation npiH—> S,
may be factored as i, = TP where T
representation WJ:G)——)SH of the finite group G afforded by its

is the faithful permutation

subgroup J = L/K of index n.
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With the permutation representation L, there is associated a
linear representation +t of degree n which for simplicity's sake,
we also term permutation representation (t permutes the n basis
vectors of a vector space as m, permutes the cosets). This represen-

tation is in fact the representation I“ induced in H by the l-rep-

L
resentation IL of L. It is clear that IE can be factored : IE =
=I§.p (where Ig is faithful). Now obviously IE(H) and I?(G) de-

note the same group of linear transformations of a n-dimensional com-
plex (for definiteness) vector space M. Furthermore if J # G then
é - and hence IE too - is always reducible.

We can now state the following permutation condition : An irreduc-
ible representation associated with the pair L < H is an irreducible
representation contained in Ig. (If we want to generalize to reduc-
ible representations, then these too should be contained in the permu-

tation representation).

Introducing the inner product of two class functions and on G by
IS *
Qalb). = — > @) b
G |G| -§— 8 3
and using a special case of Frobenius reciprocity theorem, we find

< 'g ‘Xi>e e <[a | Resy Xi >J

(here Resti is the character of the representation Ti of G re-

stricted to J < G and 1? the character of IG If the perrmutation

condition is fulfilled, then the left hand sidi is different from zero,
say equal to n,. From the right hand side we then conclude that ny
is the dimension of the subspace U of the representation space Mi

of T (which is also the representaticn space of Ti il i of H)

on which the subgroup J of G acts trivially. We may thus take as or-
der parameter of a transition from H to L a generic element of M.
Indeed, in the phase with symmetry H the invariant component is zero,
in the phase with symmetry L, the ordered phase, there are ng in-

variant components.

If instead of "restriction" we use the term "subduction", we see

that the permutation condition is just Birman's subduction criterion
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(BIR66) which, according to his version of Landau's theory, "is neces-
sary and sufficient in order that Ti of H should be acceptable-ac-
tive" (BIR78). Remember that the permutation condition arises quite
naturally from the requirement that an irreducible representation be

associated with a pair L < H.

3= It is now generally admitted, that the Landau-Birman subduction
criterion is too permissive. For help we now turn to the Curie-prin-

ciple.

In 1894 Curie wrote : "La symétrie caractéristique d'un phénomé&ne
est la symétrie maxima compatible avec le phénomé&ne" and "Quand plu-
sieurs phénoménes se superposent...,il ne reste plus alors comme élé-
ments de symétrie gue ceux communs a& chaque phénomé&ne pris séparément”.
In the fifties, the Russian crystallographers of the Shubnikov school
have applied this principle to ferro-electric and ferromaanetic phase
transitions, i.e., to transition where the order parameter is the elec-
tric polarization (ZHE 56, SON 59) or the magnetization. In these cases,
the symmetry group L of the ordered phase is then the intersection of
the crystallographic symmetry group of a crystal with the symmetry
group of the order parameter; this group is of course the largest sub-
group of the symmetry group of the disordered phase that leaves invari-

ant a given orientation of the order parameter.

Taking into account what we have found (in Section 2) concerning
the relation between order parameters and representation spaces of ir-
reducible representations, we now state the general Curie principle :
The subgroups L of any symmetry group H of a disordered phase that
can possibly arise in phase transitions, are those that are maximal
with respect to the property of acting trivially on a given (non-zero)
subspace of the representation space of an irreducible representation
of H. Equivalently this means that these groups are maximal with
respect to the property that the permutation afforded by the subgroup
contains an irreducible representation a given number of times. Birman's
"chain subduction criterion" is the general Curie principle restricted
to one-dimensional subspaces. The general Curie principle - applied to
crystallographic point groups - is implicit in MEL 56, MCD 65 and
MUR 75 (in relation with molecularphysics) and JAN 75 (in relation with

macroscopic properties of crystals).
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The results found so far can be summarized as follows (xi is the

character of the irreducible representation Ti of H)
permutation condition - subduction criterion
H
<: lL f 7(|;> =fE C)

chain-subduction criterion

maximality of L with respect to

QI 1Ky = |

general Curie-principle

maximality of L with respect to

IAl>=n >0

4. Even the generalized Curie-principle seems to be permissive. Ex-

amining (ASC 66a, ASC 77) a great number of experimental results indi-
cated that in all cases the subgroups obeyed a more restrictive crite-
rion ("maximality principle") : Among the subgroups L obeying to the
general Curie-principle, only the maximal ones were found. In other

words, these subgroups are maximal with respect to the property

LRI £0

Recently (CRA 76) cases have been exhibited where this more restrictive
principle applies. In this interestinoc paper, the authors fail to dis-
tinguish between the Curie-principle and the maximality principle. Then
they point out, that the Curie-principle admits subgroups that do not
correspond to a minimum of the thermodynamic potential (i.e. the Curie-
principle is too permissive). For transitions that have magnetization
as order parameter, they then give a list of Shubnikov-point groups
that do correspond to minima of the thermodynamic potentials. The re-
sults are exactly those that have been obtained by the maximality
principle already, in ASC 66a and ASC 66b.
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However, this is by no means a proof of the maximality principle.
The thermodynamic potentials which one minimizes are (usually incom-
plete) Taylor-expansions up to terms of a given (low) order. To draw

valid conclusions, one needs standard polynomials for the thermody-

namic potentials. I think that equivariant catastrophe theory will

provide such polynomials. In trying to determine such a polynomial for
an elastic, magnetizable and polatizable crystal, one can see that it
requires lengthy computation. One certainly will have to rely on good

computer programs.

B4 It seems that in many cases of phase transition, the maximality
principle is obeyed. To my knowledge so far, no experimental counter-
example has been found, nor has a proof been given which would show

under what conditions this principle is valid.
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