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i O This is a shortened version of a talk given (April 1979) at the
University of Louvaine. It should have served also as basis for a sim-
ilar talk at the conference held in Bielefeld (September 1979), which,

however, because of my unability to attend, finally was not given.

The aim of this paper is to explore what can be said about phase
transitions on the basis of symmetry considerations alone. This cannot
exhaust the theory of symmetry changes in phase transitions. Group
theory does not contain a theory of phase transitions, but it helps.
It helps a lot. To see this, we shall discuss the consequences of two

almost trivial, but - as it seems - unavoidable principles.

The main question here concerns the relation, if any, between two

phases, connected by a phase transition.

It is necessary to make more precise the term of "connection". Ve
shall do this by somewhat restricting our problem to phase transitions
which may be discribed by using an order parameter. Two phases connect-
ed by a transition will then be a disordered phase and one of the
phases arising from it by some ordering. We know since L. Landau (in
fact already since P. Curie) that the symmetry group L of the ordered
phase is a subgroup of that, H, of the disordered one. Two ordered
phases belonging to the same ordered phase are not necessarily in a

relation of group and subgroup.

If presented with two groups connected by phase transition that
do not display such a relation, it is always possible - and sometimes
useful - to construct a group that contains the two as subgroups. If
the subgroup describing the ordered phase is the trivial group (so that

the ordered phase then has no symmetry) it is usually worthwhile to
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consider that the symmetry groups at hand represent the "true" symme-
tries of the phases only modulo some hidden symmetry; in the same way
the translational symmetries are hidden in the macroscopic properties

of a crystal.

Our investigation then is restricted to two phases that are in a
group-subgroup relation. A second restriction is that to subgroups of
finite index. We limit ourselves to these because we do not want to
eclipse the main ideas by the mathematical safeguards needed in the
case of infinite index. What does this restriction amount to ? This
depends of course on the type of symmetry group we want to consider.
If e.g. the symmetry group of the disordered phase is a space group, a
subgroup of finite index is a space group of the same dimension. It is
clear, however, that subgroups of infinite index are important in con-

nection e.g. with crystallization and incommensurable phases.

2. The first of the two principles we want to investigate is the
following : The group and subgroup (corresponding to a discordered and
ordered phase that arises from it) determine an irreducible representa-
tion of the symmetry group of the ordered phase. This is an important
part of Landau's theory. Two additional features : The stability condi-
tion (which is a necessary condition for the transition to be continu-

ous) and the homogeneity condition are not considered here.

Given a group H and a subgroup L, how can they determine ir-
reducible representations of H. Well, they first determine the per-
mutation representation HL of H afforded by L. This is obtained by
associating to he H the permutation that it induces (by multiplica-
tion on the left, e.g.) on the cosets of L in H. Because L 1is of
finite index (say n), the kernel of this representation (also termed
the core of L) is also of finite index. Thus the guotient H/K = G

is a finite group of order |G|.

The projection p:H—G of H onto G establishes a one-to-one
correspondence between those subgroups of H that contain K and all
subgroups of G. Therefore the permutation representation npiH—> S,
may be factored as i, = TP where T
representation WJ:G)——)SH of the finite group G afforded by its

is the faithful permutation

subgroup J = L/K of index n.















