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1. Introduction

Let G be a discrete group. By a projective unitary representation
of G of dimension n we mesn & map D: G -U(n) together with a unit

circle-valued function w on G x G which satisfies

b(g,) Diga) =wlg, B2) D pa)y ab)

for all g,, g,€ G. w is called a multiplier (or factor system) lor G,

and, if we wish to emphasize w , D is said to be an w-representation.
The associative law for group multiplication forces w to satisfy

w(gp g:)“(?ﬁ B2y 33) =w(g, 685 @(Bas gs)v (2)

for all g,, B,s B,¢€0G.

If « is any unit circle-valued function on G we can obtain a new
projective representation D' by defining D‘(g) = a(g) D(g), for all
g € Go. We soon check that D’ is an w’-representation, where

a
w'(e,, 8,) =J'§(EL‘:‘§G‘E§)- wg, » B, (2

for all g, g,€¢ G. Ve say that w' is equivalent to w with gauge
function a . DNote tnat a is not unique in that we can multiply it by
any unitary linear character of G without changing « . Within each
equivalence class of multipliers there are some which satisfy w(e, g)
=w(g, e) =1, for all g,, g,€G. Henceforth we shall only deal
with such normalized multipliers.

If we express a multiplier in the form w(g,, g2) = exp[2miug,, £,
where ¢(g, g,)¢€ [0, 1), for g,, g, €6, then the condition (2) and
the normality condition become

#(5,5 8+ #(8 82> B)Z 0 8, 6,80 +¢(8,, 5,), mod 2, @)

for all g,, §,5 B,€G, and
¢(e, g) = ¢(g, e) =0, (5



for all g ¢ G.

Using pointwise multiplication of multipliers the equivalence
classes form an Abelian group called the Schur Multiplicatog I1(G).
In this group the identity element is the class consisting of the so-
called trivial multipliers, which are of the form

we, &) = RELD— (6)

for some gauge function « and for all g, g,€G. Note that two multi-
pliers are equivalent if their quotient is trivial. IExpressing the
gauge function in the form alg ) = exp [ 2ri6(g) ] , g €G, the condition
for triviality becomes

¢(g,s 8202 0(g,82) - 6(g1) - 0(gs), mod 7, (7

for all g,, g, €G.

There are numerous applications of projective representations, some
of which are indicated in [ 3 ] , as well as a pure theory. However,
the main motivation for the present paper is connected with the con-
struction of irreducible representations of crystalleographic space
groups. In the theory, as expounded by Bradley and Cracknell [ 7] end
summarized by the present author elsewhere in these proceedings, the
computation of projective representations of certain point groups for
given multipliers is required. Without any special simplifying
features this can be quite an onerous task, and certainly will be if
increasing use is to be made of the 4-dimensional space groups - recall
that the largest 4-dimensional crystallographic peint group has
order 1152. However, as years go by, an increasing number of multi-
pliers and associated projective representations of various groups
are being computed - for a recent survey of results in this field
see [ 5 ]. Therefore the following situation can arise: We wish
to find the irreducible w -representations of a given group G for a
known multiplier w . Suppose we already know a representative or
standard set of multipliers and their associated irreducible projec-
tive representations. w must be equivalent to one such standard
multiplier via some ;auge function. It follows that we can write down
the irreducible w -rewresentations of G provided we can identify to
which standard multiplier wis equivalent and also that we can compute
a gauge function., Yquivalently we can pose the question: Wwnen is a
function ¢ satisfying (4) and (5) representable in the form (7), and
if so how can we determine the gauge function 67 YThe answer to these



(ii) pi(pea) = (p pa)a, for all p,, p,e P, a € A;
(iii) p(a + b) = pa + pb, for all p ¢ P, a, b € A.
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We have scme further definitions
A mavping u: P - A is a d-cocycle if
u(p,p,) = wlp,) + pulp,) , (8)

all p,, p P, and where u(e) = O.
A 1-cocycle u is a J-coboundary if there exists a fixed element
A, i3 a QO-cochain, such that

u(p) = a - pa, (9

#il g € B,
A mapping v : P xP -4 is a 2-cocycle if
vi(p,s o + V(P Dy Py) = VP, PP + bR, D, (10)

all p, p,, P,€F, and where v(p, ¢) = v(e, p) = O for all pe P,
A 2-cocycle v is a 2-ccoboundary if there exists a map u: P-4, a

d-cochain,such that
















