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In this paper we classify d-dimensional point arrangements.
Section A is meant to inform the reader of the background of
the multiplex idea [1]. Section B contains a mathematical
definition of the multiplex and in section C some implications
are mentioned. The multiplex concept poses a number of attrac-

tive problems which have hitherte resisted solution.
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A. BACKGROUND AND IDEA

Objects are frequently represented by mobile or rigid spatial
arrangements of labeled or unlabeled points in our intuitive
physical space. Examples are molecules, where the relative po-
sition of the atoms are correlated with physical and chemical
properties. For most chemical correlations, a molecule is not
considered to be fixed in space and some of its atoms are
often viewed as mobile with respect to each other.

It is, therefore, not surprising that modern stereochemistry
has evolved a number of concepts which may be generalized to
mobile point arrangements [2]. One such concept is the fac-
torization of a molecule into chirality elements [3], an idea
found most useful since the asymmetric carbon atom was postu-
lated by van't Hoff [4] and Le Bel [5].

A chirality element is a chemically feasible subarrangement of
atoms which can exist in a left- and a right-handed form. Each
chirality element doubles the number of potential stereoiso-
mers, except when there is special symmetry. The smallest con-
ceivable chirality element consists of a non-planar arrangement
of 4 atoms which are different or have different environments.
We shall call such a smallest chirality element a chiron. Might
it be useful to follow a self-consistent approach which con-
siders the orientation!) of all chirons in a molecule? Evident-
ly, not all of the chirons are independent of each other in
this respect. In the chiral methane derivative of Fig. 1, for
example, the orientations of the 5 chirons are interdependent,
as long as it is chemically not feasible to place the carbon

atom outside the tetrahedron spanned by the other 4 atoms.

1) What we call orientation of a chirality element is some-

times also referred to as sense of chirality [3].
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Fig. 1

With the intention of gaining an insight into the problems
connected with this approach we generalize the concept of chi-
rality element by considering the atoms of molecules as points
and by dropping the restriction of chemical feasibility. This
leads to mobile?) point arrangements.

In order to define a 3-dimensional mobile point arrangement we
factorize it into subarrangements of 4 points. A subarrange-

ment is subjected to a mobility restriction by not allowing

each of its points to pass through the planes spanned by 3
other points. When these 4 points are differentiated, as in
Fig. 2 and 3, the subarrangement is chiral since our intuitive

physical space is orientable?). When the points are labeled

»* *

O O 3

Fig. 2 Fig. 3 Fig. 4

2) Note that we use the term mobile in the sense of movable
in space and deformable.

3) We use the terms chiral [6] for figures and orientable [7]
for spaces. Orientation, on the other hand is taken to be

an attribute to both figures and spaces [7]. See also ).
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with ordered symbols, such as symbols of natural numbers, as
in Fig. 4, its orientation can be specified. In line with our
generalization, we use the term chiron for a mobility restric-
ted, numbered &4-point-subarrangement. A chiron may be conside-
red to be the vertices of a mobile oriented simplex, which re-
tains its orientation. A mobile point arrangement consisting
of chirons only will be called a multiplex.

The notion of a chiron and thus of a multiplex can be genera-
lized to any dimension: A d-chiron consists of d+l numbered
points in a d-dimensional space (d>l) , so that no point is
allowed to pass through the hyperplanes spanned by d other
points, and a d-dimensional multiplex is a "mobile" point ar-
rangement consisting of d-chirons. A 1l-dimensional multiplex
corresponds to an ordered arrangement of numbered points on a
straight line, sometimes called permutation [8]. In this sense
the multiplex notion may be interpreted to be a generalization
of the concept of order to higher dimensions and the chiron
may be regarded as something like a quantum of order.

B. THE CHARACTERIZATION OF MULTIPLEXES

In the following, Rd denotes the oriented d-dimensional Eucli-
dean space®).

Definition: A n-tuple £ = (Pl,Pz,...,Pn) is called a
(n,d)-figure, if P1,Pz,...,Pn are points of Rd (n>d>1) in
general position. General position means that no d+1 points
belong to a hyperplane of Rd‘

%) The orientation ofiRd determines for d=1 the positive sense
of a line, for d=2 the positive sense of a circle and for
d=3 the positive sense of a helix.



- 345 -

As example we consider f;, £, and f4:
(e e
Fig. 5 1

Fig. 5 visualizes the (4,1)-figure f; = (P;,P2,P5,P;); R! is
represented by the line with the arrow and the direction of

the arrow shows the positive sense of the line.

;.
[ ]

Py

. O

Fig. 6

Fig. 6 visualizes the (5,2)-figure f; = (P;,P2,P4,P;,P5). The
plane of the paper with the arrowed circle represents R? and
the direction of the arrow shows the positive sense of the
circle.

Py

Pq fi;\

Py
Fig. 7 P2
Fig. 7 visualizes the (4,3)-figure £y = (P1,P;,P4,P;); the
lines between the points are only intended to give a 3-dimen-
sional impression. R? is represented perspectively in the

plane of the paper and the perspective view of the helix shows
its positive sense’).

%) Notice that the arrow in Fig. 7 is not needed to show the
positive sense of the helix.
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The d+1 points Pit’Piz""’Pidq with 11<11<...<1d'10f the

(n,d)-figure f = (P1,P2,...,P ) determine a (d+1,d)-figure

(P. JP i ,...,Pi ), which is called a simplex-figure of f£. All
2

Smelex figuresdof f can be arranged in lexicographic order of

their index-sequences. Thus a (f)-tuple A(f) of simplex-
figures corresponds to f. In our examples:

A(fy) = ((P1,Py),(P1,Ps),(P1,P,),(P2,P3),(P2,Ps),(P3,P0));

A(f2) = ((P1,P2,Py), (P1,P2,P.),(P1,P2,P5),(P1,P3,Ps), (P1,Py,Ps),
(P1,P4,Ps),(P2,Py,P,),(P2,Py,Ps),(P2,P4,P5) ,(Ps,Py,P5));

A(fy) = ((P1,P2,P3,P;)).

Now we consider the orientation of the simplex-figures of f
and put 1 for positive and O for negative orientation®). Thus
we get a ({1 -tuple a(f) of numbers 1 and 0. In our examples:
a(f1) = (1,0,1,0,0,1); a(f;) = (0,0,1,0,1,1,0,1,0,0);

a(fy) = (1). a(f) can be considered as a dyadic representation
of a non-negative integer, which we call the signature of £
and designate it as o(f). In our examples: d(f1) = 41;

o(f2) = 180; o(f4) = 1. We now define an equivalence relation
on the set of all (n,d)-figures as follows:

Definition: Two (n,d)-figures f and f' are equivalent if ¢(f)
= o(f'). An equivalence class [f] is called an (n,d)-multiplex.
The common signature of all the representative (n,d)-figures
is the signature of the (n,d)-multiplex. A (d+l,d)-multiplex

is said to be a d-chiron.

®) The orientation of the simplex figure (P, ,P. ,...,P. ) is
& X1~ 13 iget
positive or negative according to the sign of the determi-
nant det(P, P, ,P, P, ,...,P, P, ). This orientation can
i1 127714171, i1 714m
also be derived by following the points in the order of

their indices and determining whether for d=1, 2 or 3 the
sense of the line, circle or helix, respectively, is posi-

tive or negative.
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The signatures of (n,d)-multiplexes belong to the set

I(n,d) = {v eZ/ 029(2(‘3’)}. But not every integer ve I(n,d)
is the signature of a (n,d)-multiplex. There is, for instance,
no (4,2)-multiplex with the signature 5, because there is no
(4,2)-figure £ = (P1,P2,P3,P;,Ps) with o(£f) = 5. If it would
exist, it would have A(f) = ((P:,P;,P,),(P1,P2,P,),(P1,P3,P,),
(P,,Py,P;)) and a(f) = (0,1,0,1). As can be seen in Fig. 8, P,
would then have to lie in the intersection of the three shaded

half-planes, which, however, is empty.

A O

Fig. 8

We denote the set of integers which occur as signatures of

(n,d)-multiplexes as M(n,d). For some of the simplest cases

we get:

M(2,1) = {0,1}

M(3,1) = {0,1,3,4,6,7}

M(&4,1) = {0,1,3,4,6,7,11,15,20,22,30,31,32,33,41,43,48,52,56,
57,59,60,62,631

M(5,1) = fo,1,3,4,6,7,11,15,20,22,30,31,32,33,41,43,48,52,56,

57,59,60,62,63,75,79,95,107,123,127 ,148,150,158,180,
188,190,222,223,254,255, 288,289,297, 304,312,313, 361,
363,377,379,432,436,440, 444, 504,505,507 ,508,510,511,
512,513,515,516,518,519,579,583, 587,591, 644,646,660,
662,710,711,719,726,734,735,768,769,800,801,833,835,
843,865,873,875,896,900,916,928,944,948,960,961,963,
964,966,967,971,975,980,982,990,991,992,993,1001,
1003, 1008,1012,1016,1017,1019,1020,1022,1023}
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M(3,2) = {o,1f

M(4,2) = {0,1,2,3,4,6,7,8,9,11,12,13,14,15]

M(5,2) = {o0,1,3,7,8,12,14,15,16,18,19,23,24,28,29,31,48,50,54,
55,56,57,61,63,65,67,70,71,72,73,76,78,97,98,99,102,
105,108,109,110,112,113,114,118,121,125,126,127,128,
129,136,160,164,168,176,180,182,183,184,185,187,191,
193,200,201,209,217,219,240,241, 244,246,249 ,251, 254,
255,274,275,279,290,292,294,306,310,311,323,324,326,
327,328,329,331,332,339,343,347,354,355,356,358,361,
363,364,365, 384,385,386,401,402,403,416,418,420,465,
467,475,480,482,483,484,491,492,493,495,496,497,499,
500,507,508,510,511,512,513,515,516,523,524,526,527,
528,530,531,532,539,540,541,543, 548,556,558, 603,605,
607,620,621,622,637,638,639,658,659,660,662,665,667,
668,669,676,680,684,691,692,694,695,696,697,699,700,
712,713,717,729,731,733,744,748,749,768,769,772,774,
777,779,782,783,804,806,814,822,823,830,832,836,838,
839,840,841,843,847,855,859,863,887,894,895,896,897,
898,902,905,909,910,911,913,914,915,918,921,924,925,
926,945,947,950,951,952,953,956,958,960,962,966,967,
968,969,973,975,992,994,995,999, 1000, 1004, 1005,1007 ,
1008, 1009, 1011,1015,1016,1020,1022,1023 }

Using M(n,d) for the complement of M(n,d) with respect to
I(n,d), the following can be verified:

1. M(d+l,d) = {0,1} and
~ 2d+3+(_1)d_3 2d+¢.+(_1)d+1_3
M(d+2,d) =

6 6

2. 1f n<n', then M(n,1)c M(n',1)

3. If n<n', then M(n,d) c M(n',d)
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n
4, If vh' = Z(d’i)-l, then v eM(n,d) & v'e M(n,d)

Note that, if v and v' are signatures of two (n,d)-multi-
plexes, these multiplexes can be represented by mirror
image (n,d)-figures.

The full characterization of M(n,d) turns out to be a difficult
problem. Its solution would answer a question which was alluded
to in section A, namely how many and which of the (;7y) chirons
must be specified in order to fully determine a given (n,d)-
-multiplex.

Even the simpler task of counting the number [M(n,d)| of
(n,d)-multiplexes has not been solved except for d=1, when it

is n!. Without proof we mention a lower bound:
n-1
= &
Mo,dls 2 || r,a,
k=d+1

where r(k,d) denotes the maximum number of regions into which
Rd may be partitioned by the hyperplanes of a (n,d)-figure,
each hyperplane being spanned by d points of that figure,

For the calculation of r(k,d), the results of Zaslavsky [9]

can be used.

C. REMARKS

For the characterization of a (n,d)-multiplex [£] by an
integer, other possibilities exist than the one defined in
section B. It is worth considering some of them since they
might express certain aspects of particular interest. Thus,
for instance, the lexicographic order of the () simplex-
figures of f used for the construction of A(f) could be re-
placed by another order. Furthermore, «(f) may be considered
as some other representation of an integer rather than the

dyadic one.
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(n,d)-Multiplexes can be classified as follows: If 7 denotes a
permutation of the points of the (n,d)-figure f = (Pl,Pz,...,Pn)
we write W (f) = (F(Pl),ﬂIPZ),...,W(Pn)). Two (n,d)-multiplexes
[f] and [f'] are now equivalent when there exists a permutation
T such that [W(f)] = [£']7). Accordingly, a class of (n,d)-
multiplexes is represented by a set of n points in Rd. For
example, each of the two point sets of Fig. 9 and 10 represent
a class of (4,2)-multiplexes; the corresponding classes of sig-
natures are {0,3,6,9,12,15} for Fig. 9 and {1,2,4,7,8,11,13,14}
for Fig. 10.

Fig. 9 Fig. 10

If a (n,d)-multiplex is considered to be a mobile arrangement
of numbered points, a class of (n,d)-multiplexes may be taken
to be a mobile arrangement of unnumbered points. The problem
of the characterization of (n,d)-multiplex classes for d>1
turns out to be difficult. It may be related to the problem of
the axiomatization of a d-dimensional order structure, one
aspect of which will be discussed in [12] and another in [13].

In a (n,d)-multiplex [f] the points of f are required to be
in general position. If one drops this requirement there may

7) A class of equivalent (n,d)-multiplexes corresponds to a
realizable (n,d+l)-tournament. (n,d+l)-Tournaments were de-
fined in [10] as generalizations of tournmaments, which are
oriented complete graphs [11l], and those that can be
embedded in mﬁ were called realizable.
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be non-oriented simplex-figures, so that three values should
be available to assign to simplex-figures, such as, for
instance, 1, 0 and -1. A signature can then be derived by
interpreting the (f})-tuple of values as a triadic or some

other representation of an integer.

For our definition of a multiplex the Euclidean space was used
because it is close to the physical space; the affine space,

however, would be sufficient. Finally, it might be of interest
to examine a generalization of the multiplex concept by basing

it on orientable d-dimensional manifolds other than]Rd.
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