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Broken symmetry is a usual approach in physics of imperfect
crystals. This approach presupposes that the function 6p (¥)
which describes the electron density deviation of imperfect
crystals from a certain ideal distribution p“(?) has Fedorov-

Schtnflies space symmetry, that is a subgroup G)Gpc.mp of the

symmetry group of undisturbed crystal.

In this approach I. M. Lifschitz [1]) was the first to develop
the theory of the isclated impurity atom in crystal. Since then
this theory has been applied to different physical situations:
The impurity influence on the electronic spectra of metals [2],
on the crystal lattice vibrations [3], on the spin perturbation
spectra in ferromagnetics [4], on the dielectric and unelastic

relaxation [5] etc.

In every case there was discovered a general law: impurity

atom in crystal with the quasicontinuous spectrum of the ele-
mentary perturbations brings local perturbation, the latter lea-
ding to the appearance of discrete lines out of the band of the

ideal crystal, that is so-called quasilocal or resonance levels.

It is expedient to use the broken symmetry approach when the

symmetry decrease mp::mp, removes the degeneracy of the physical



states of the system. In general case when there is an addi-
tional (unaccidental) degeneracy which is not described by
the group mp or when additional coordinates (or degrees of
freedom) of the physical system are taken into account it is
necessary to apply the approaches of the preservation or ex-

tension of the abstract symmetry group [6,7].

Let us suppose that the electron density deviation function
Gp(;) has its pyoper symmetry group ndp which does not coin-
cide with any of the classical space groupsbut may have the

Fedorov- Schinflies subgroup © Dg_n It follows then from the

8 §p”

equation
p(X) = po @) + 8p(F)

that the classical space symmetry group of the imperfect crystal

with the electron density distribution p(¥) will be

| = Eb,n thg 0]

e © x oD —> o(E)

which means the common part (or intersection) of both groups

0 and @ (see Fig. 1). It constitutes in fact the broken

dp
symmetry approach.



Fig-‘l Euler Diagrams show the relation between symmetry groups of
imperfect crystal with electron density function p(f)=pe (F)+6p ().
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approach of symmetry conservation na P mp_ (h=p,g,w_,w_).

P g
In that of symmetry extension np=s°am;h) where the proper sym-

metry of the function p(¥) at the fixed point T is characterized
by appropriate symmetrizer Gc[S,T]. In every case

=~ ~ i
L= ﬂéplmp. or npcﬁnﬂpawp¢'nﬁngnﬁp'mpommmﬂd}l.

In this approach one neglects the additional symmetry proper-
ties of the function p(¥). If such an admission turns out to
be too rough for the physical system under consideration it is
necessary to construct the direct product of two groups

~ =
b, ® mpo or the wreath product Qﬁplmmodm‘ In the latter case



it is convenient to restrict the space groupmp, =mmodN on
modulo N where N is a big figure:
® [
~ | ~°'N _ N ~
B5p @ = (B, @ ... B8 0,) @ Quoqy = 8 85, @ Qay

As is known the direct product of two groups is well defined
without restrictions, but the wreath product exists only in

the case when N- fold direct product g ﬁﬁp forms an invariant
-1 _ o~

sp%1 = Ugpr qnodN‘

If necessary the symbol () of the semidirect product may be

subgroups of ﬁ;plqﬁ which means that ¢i§ o€
replaced by (% to receive an other useful construction free

from such a restriction.

Now the symmetry group of the composite function p(?):dp(})+pv(§)
may be defined as the maximal subgroup 90=950m o, of the wreath

P
product Hs{\“%- which preserves the function p (%)

~

Qﬁpmp.(6p+p°)=960'69+mp°-p =Sa+p°=p,np§_9691mpo +Qts € 9

[ P

Which of the subgroups of wreath product becomes the symmetry
group np depends on the model of imperfect crystal under consi-
deration. As a first approximation to np it is convenient to
choose a junior group Qp‘-* Wp’ isomorphic to mga according

to the law of conservation of the abstract symmetry group of

the isolated physical system, under which the summary symmetry

of such a system is never lost: One kind of symmetry is transfor-

med into another [6,7]. The effect of this law can be observed -



- in the phenomenon of crystal structure memory, the sta-
tistical preservation of the initial symmetry group at the

level of domain structure after a phase transition, etc.

To construct the group np447 mp° let us replace the classi-
cal transformations ;€0 lost after the symmetry decrease

(w,)

; . ..,
mp<:mpb by generalized transformations &y —<wi|¢i>

(wiy) i (ws)_m(w)
g =0 ¢ ® ® = =
y 5 1ump HU Vo, @ g&>D U 9, TU u A 5 Q
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The selection of loads Wy to the transformation ¢i(i=2,...,s;¢1:e)
is realized according to the algorithms of constructing of co-
lor positional groups [6,8]. Let us illustrate this algorithm

on the following example.

Fig. 2 represents a unit cell corresponding to the point group
G = 4 mm. The positions of the triangles in the regular set of
figures are marked by the symbols of operations giEG, the white
and black colours marking conventionally the physical states
of the figures: The black triangle may model a vacancy of impu-
rity atom, for instance. The color positional symmetry group
of a system under consideration may be designeted by the symbol

& w AA12N RY 2y

showing in the brackets the untrivial
cyclic permutation cof colours (12) connected with the operations
4 and m: rotation at 90° around the axis 4 is connected with the

transition of the positions 1 and 43

to the positions 4 and 1
and with the recolouring of the triangles. The remaining posi-
tions under operation 4 exchange their positions without reco-

louring.
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Fig.ZThe point symmetry group G(‘") = 4“2’m”2)m“2) of the unit
cell containing a vacancy or impurity atom (the blackened triangle)
9 g
is defined by the positional operators <"i|gi> = <p11..‘p‘n|qi>,

giEG=4m,p1€P={p1=(1) (2),pp=(12)) and the multiplication law
.9 9497 97 949, 9,
ylegrewylag>=tugle e >=<p ) oy epy? Tpyla e300,

Fig. 3 gives a fragment of a two-dimensional crystal with a con-
stant defect density, unit cells (UC) containing a point defect

of the kind of Fig. 2, a being blackened. Let us perform the
scaling transformation to the enlarged unit cell (EUC). The trans-
lation group T will be in this case the extension of the subgroup T'
of T corresponding EUC by means of the finite group Todr oM
posed of representatives of cosets in the decomposition

2 2,2 ;2.3

P 2 2.3 2 3
T=T'@T o =TTRI0, £, 87 by, 85,85, b by b ), 65, ETE,  £TES, £1E0),
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E‘igu 3 The translation group TmodT' of the finite order corresponding
to the enlarged unit cell of two-dimensional crystal with the
constant defect density (the blackened unit cells) is defined
by the multiplication law of the positional operators

(a;+a.) (B,+B
> ke | i
H b3

a a, B a4, B4
: g | [ e t3Jesd 3
<w:\t! t) ><wj]t1 ty > = <wi wjj > and the

cyclic boundary conditions (£,8)%=@%,)% (2 2,)"288 (moar")

Having defined T
o (W)

we go to the color positional group

vt ! a, B 3_24_
combining the transformations t1t2ETmodT,(€1—Ez—6)

by the appropriate loads, and from the latter to full translati-
(w)

modT'

modT'

nal group T(w)=T' 2T The space symmetry group of the

modT "' *
model will become then a semi-direct product m(w)=T(w)(§ civl,
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The detailed information on the multiplication law of the
positional space operators and their effects on "colour™
points can be found in [9]. Without dwelling on it let us

point out that the general symmetry groups of imperfect

(w)
o

serve as precise positional representation of the latter

crystals @ isomorphic to Fedorov- sch&énflies group mon

and in this capacity they answer the basic requirements

for the symmetry groups. They present a geometrical descrip-
tion of imperfect crystal structure model, impose restrictions,
predict and describe physical properties of the model in point.
At last they become classical groups when the defect density
approaches zero. Withal the content of appropriate physical
theory is not impoverished but on the contrary enriched by

the considerations of the internal degrees of freedom of the

system and the transition to the non-linear description.

The broken symmetry approach fails for the system properties.
The physical properties of the imperfect crystal as a whole
system are described more precisely and completely by generalized
groups. From the point of view of the generalized symmetry the
imperfect crystal is a split object, i.e. a composition of
Fedorov and non-Fedorov subspaces with its distant translation
ordering defined not globally, but at the level of one or several
basic substructures embedded in non-Fedorov space. Fig.1 shows
the relations between the symmetry groups of imperfect crystals
in the approaches of conservation and extension of the abstract

symmetry group.



|

Let us consider now the phase interpretation of colour groups.
According te the well-known relation
-ZWiﬁ'v.‘E'

I X E F(ﬁ)e between

o (B =1

the electron density function p(}) and the structure amplitude
. S :
pf) =% ijanﬁ-r s \F(§)|elw(ﬁ)
3

the space symmetry group 0=TG of the physical space o (F) maps
homomorphically onto the point symmetry group G<>@/T of the
Fourier space F(H) [13,14]. It follows from the equivalency
relation H-8T «=> 6_1ﬁ-f. According to the Fridel law the sym-
metry group of F(H) includes the space inversion operators 1
and operators of combined inversion 1¥ = 7T = 71%, the 1" being

the operator of complex conjugation:

TF(H) = F(-B) = F(H), T*F(H) = F*(-H) = F(@)
In symbols: O x p(F) —> o(F) e;p(F) = o(e] ') = p(¥), 8,6

1{ Jl or a
(1Te7% & G x F(H) -~ F(H) giF('ﬁ) = F(g;1ﬁ) = F(H), g, €G>/ T

The direct factor 1 @ 1* presents the properties of the "super-
symmetry"” of the function F(ﬁ) connected with its proper struc-
ture while subgroup G maps symmetry properties of the function

o (¥) onto the function F(H).

Let us ascribe to every node of reciprocal lattice the phase

E
¢(H) which corresponds to the ncde in the Fourier representation.
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The symmetry of phase space thus constructed { (o (H) ,H)} will
be a colour positional symmetry, corresponding to the syste-
matical extinction conditions of x-ray reflection imposed on
F(hkl). The four rules of extinction(l = 4n, 4n + 1, 4n + 2,
4n + 3) for the group m=P41 lead to four ways of ascribing
the phases o(fl) to the nodes H with equal amplitudes |F(H)]|

(24) 2.9
Z,4Z

[15], and to four groups of symmetry 4/m*, 4(4)/m /m*,

-1 (22)
4(4 )/m % of the phase space, coming under one positional

group 4(1'4'22’4_1)/m(1¥’23’1*'25). Defining the local systems
of reference x, iy at every nodes ﬁ, which are parallel to

each other, and constructing the phase vector Z(ﬁ) of the length
of |F(H)| at an angle of ¢(H) to the axis x in every Caussian

plane we get a convenient vector interpretation of the phase

space {((o(H),H)}, an analogue of the magnetic crystal structure.

In the vector interpretation the operator 1* performs the inver-
sion of phases 1*¢(d) = -9(H), in the scalar one 1*(o¢,H) = (¢+n,H),

() _ pg transform the points (¢,H)

while combined operators g
of the phase space into the points equivalent ( £ ) to them un-

der the phase symmetry:

pg(e,H) = (pe,gi) £ (¢,H), peP «>G/H

Pcl1* @ mo, HAG =1 8 G, gEG &> O /T

To pass from the scalar phase structure to the vector one it is

sufficient to replace the points (w,ﬁ) by the points ($,§). In
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the vector interpretation the phase symmetry group of the
2

example reelives the symbol 4”'4'22'4—1)/111‘2-"'23" *%y)
since 1'8(%) = -&(T) the replacement of the operators 1'¢«» 1%
brings the magnetic and phase symmetry groups to one-to-one
correspondence allowing to consider them as physically di-
stinct interpretations of the same abstract colour P- and

Wp- symmetry groups. All phase symmetry groups of the Fourier

spaces corresponding to 230 Fedorov-Schinflies groups were deri-

ved by A. Ju, Papaew, E. H. Ovchinnicova and the author in 1976.

Describing the electron density distribution of imperfect
crystal by the composite function p(T) = p°(T) + dp(T) and
considering sp(¥) as a weak perturbation of some ideal distri-
bution pe(¥) we can find in the same way the non-classical
symmetry groups np of imperfect crystal, QOXp(T)Aap(Y) and
their images in the Fourier space. The adequacy criterium of
the crystal deviation model will be of course the correspon-
dence of the observed and calculated intensities of X-ray

reflexes.

Let us consider as an example the symmetry of the space modu-
lated phases of Na2C03 crystal. The so-called "incommensurate"
modulation in that crystals appears below Ti=6200 K. The tem-
perature dependence &O(T) of the wave vector of the modulation
wave is shown at Fig. 4 [16]. In the reference system a*, b+, 3%
of three dimensional reciprocal lattice T (3) corresponding to

the main reflections of the basic crystal structure p°(?) these
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reflections have numerical indices (hkl) while the components
31,33 of the wave vector of the harmonic atom displacements
wave run continuously all the real values at the segments
0,182a*2q12 %a‘“: 0,318 c‘*éq3g %c"' with the change of the
temperature. The indices ﬁ,T of the satellite reflections
(ﬁki) describing such a modulation change in the appropriate
way. One can achieve the numerical indices (hklm} of those
reflections in the reference system of the four-dimensional

lattice T*(4) connected with T*(3) by the scaling transformation:

ha* + kb* + 12* + md* = (h+mq1)§* + kb* + (1+mq3)é* = hd* + kb* + 1&*.

present work
ret (9}

wxtrapoloted
trom b 12}

Fig’.4 The temperature dependence of the wave vector of the modulated
wave for the incommensurate 11(from AtoQ), vth to G), 11(G to I)
and commensurate (I to K) &-phases of Na,C0; crystal in the plane
3%,2% of the reciprocal lattice. A: 470° K, B: 370° K, C: 300° K,
D: 295° K, E: 275° X, F: 235° K, G: 200° K, H: 175° K, 1: 120 K,

o

J: 20o K and K: 4,2° X (according to (16)).
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The continuous character of the dependence EO(T) gives to the
terminus "incommensurate modulation" [17] a general rather phy-
sical than geometrical sense. The space modulation is called an
"incommensurate" one if aO(T) is continuous at some tempera-
ture segment and ao(T1) t&o(Tz) if T? *Tz irrespective of the
fact rational or irrational satellite coordinated of (hkl).

The modulation will be "commensurate" if the wave vector EO(T)
has the constant rational coordinates %, ?, T in the reference
system of T#(3) - lattice in a certain field of temperature
changing.

But such precise reformulation of the terminus is not suffi-
cient for the detailed classification of the space modulated cry-

stal phases. It is necessary to distinguish not only between the

discrete, continuous or mixed types of the modulation between
their 1-, 2- or 3-dimensional character and the kinds of the
phase transitions but also between color space symmetries of
the modulated phases. In accordance with the magnetic analogy
[18] it is necessary to mark out the remodulation phase transi-
tions which separate the phases with different space modulation

6p(?) of the initial basic structure p’(;).

Writing down the harmonic perturbance of the basic structure

o > - - -+ N +* >
p?%(r) as the phase modulation wave Ly = I + T, + Kksln(qdr1+ok)
[19], where Elk is the coordinate of the atom k in the unit cell

1+ Kk is the amplitude, is the phase of the atom displacement

“k
wave, one can construct the phase space {(w,f)) which is the

inverse Fourier image of the space {(w,ﬁ)). It is possible then

)

to define the color positional groups m;w e;mpo in the preser-

vation of the abstract symmetry group approach. The composite
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operators of those groups act in the space {(¢,2)} in accor-
dance with the positional law:

[ ¢
k > _ k - > -
<...pi ...I¢i>(%rlk) = (p; ©,®;r), where RS T FRAPRA ST I

The complanar or collinear character of the phase modulation

(2#)
may be taken into account by means of direct factors 1 2 or

1(@x2&2n). The preservation of the polarization plane of the
modulated wave corresponds to the former case, while the ro-
tation of this plane at the fixed point T around the axis x
with the temperature changing corresponds to the latter. The
projection $X(T) of the phase vectors ¢=n,¢ onto the axis x are

: (wx2%2%)
preserved under the action of operator 1

' n being the
normal to the polarization plane x, iy of the wave. In other
cases the phase symmetry groups m(g) of the space modulated
crystals may demand some other factors for the symmetry correc-

tion.

Fig. 4 taken from [16] gives the temperature dependence ao(T)

of the stationary space modulation wave vector of Na,CO, cry-

23
o o o o

stal between 620 and 4,2 K. At the segment 620 tc 300" K
&O lies at the general point of the plane a#, ¢* at the line
q; - ed, =0, while in the interval 300° to 200° ao lies at
the line a, + q, = %. To those temperature dependence of aotT)
there correspond not one [1] but at least two "incommensurate"
phases different from the colour symmetry groups

+*
m(wp) _ 1(2;) 2, 5. (w)  (2%)

32 B g 2 2
Ty B (b/2)*m m Tm SParc’n' Oy, 1 T OPIIPR LT



The detailed explanation of this result may be found in [20],

Let us note in the conclusion that the generalized symmetry
groups of imperfect crystals allow to generalize the Landau
second order phase transition theory [21]. The scaling trans-
formation from the unit cell to the enlarged unit cell, connec-
ted with the generalized groups give rise the effective method
of numerical calculations in the electron band theory [22,23]

and in the lattice dynamics of imperfect crystals [24].
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