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Abstract

A general expression (2) for the number of Kekulé
structures in an all-benzenoid aromatic hydrocarbon is

obtained.

The determination of the number of Kekulé structures, K,
in aromatic hydrocarbons is of certain interest to theoretical
organic chemistry. This seems to be a rather difficult combinator-
ial problem and in spite of repeated attempts in the past [1],

a general solution has not yet been obtained.

On the other hand, it is known [2] that the number of Kekulé
structures is related in a simple manner to the adjacency matrix

A of the molecular graph of the aromatic hydrocarbon, namely
det & = (-1)P/2 g2
where p is the number of vertices of the molecular graph.

In the present work we shall consider all-benzenoid aromatic
hydrocarbon (ABAH) systems. The number of Kekulé structures of

such a hydrocarbon A is denoted by K = K(A).
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We shall derive a general combinatorial expression for K
of the ABAH systems. Our main result, which is summarized in
Rule 2 and eq. (2) will be deduced in three steps. First we
shall present Rule 1 and eg. (1) which are valid for a restricted
class of ABAH systems. Then we modify Rule 1 into Rule 2 and thus
extend the validity of eq. (1). Finally we modify eq. (1) to
eq. (2) and thus obtain a generally valid expression for X

of any ABAH.

The basic properties and the topological peculiarities
of the all-benzenoid aromatic hydrocarbons have been considered

in a previous paper [3].

Let A be an all-benzenoid aromatic hydrocarbon with n(A)
six-membered rings. n(F) rings of A contain an aromatic sextet
and will be called full rings; n(E) = n(A) - n(F) rings of A
are empty. For example, the molecule A1 has n(A1) =12,

n(F) = 7 and n(E) = 5. Later we shall see that K(A1) = 227.
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1. SOME TOPOLOGICAL PROPERTIES OF

ALL-BENZENOID AROMATIC HYDROCARBONS

The rings of an ABAH can be partitioned into two parts.
Those rings of A which contain an aromatic sextet (and which
are as usual marked by a circle) form the full subsystem F(A),

while the empty rings of A form the empty subsystem E(A).

The full subsystem F{A)}) has a trivial structure: it is
always composed of n(F) disjoint benzene rings. In the following
we shall be mainly interested in the empty subsystem of an ABAH.

For example, E(A1) is given as follows.

Of course, E(A) contains n(E) rings. We will label them 1,2,...,

n(E).
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The number of rings in E(A) and F(A) are related in

the following manner:

n(F) = n(E) + 1 + c(E) - Y(E)

where c(E) is the number of disconnected parts of the empty
subsystem, while y(E) is the number of those rings of F(A)

which are adjacent® to six rings of E(A).

Since an ABAH can possess any number n(E) = 0,1,2,... of
empty rings, from the above equation we conclude that there exist
ABAH systems with n(A) = 1,4,6,7,8,... rings and that there exist

ABAH systems with n(F)

1:3,4,5,... full rings.

From the basic topological properties of an ABAH [3] it is
evident that every ring from E{(A) has exactly three neighbours

from F(A). Therefore,

(a) no three rings in E(A) can be annelated in a linear

mode, that is, the fragment X, cannot occur in E(A);

1
(b) no three rings in E(A) can be peri-condensed, that is,

the fragment X, cannot occur in E(A);

(¢} E(A) can be connected, but may also consist of an

arbitrarily large number of components.

*
Two rings are said to be adjacent if they possess

a common bond. Otherwise they are disjoint.
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Soollles

xT XZ

For example, the empty subsystem of A, consists of two

2

components.

In certain cases caution is necessary with the properties
(a) and (b), namely when F{(A) possesses rings which are adjacent
to six rings of E(A). For example, if the empty subsystem of A3

is presented as E(A3)+, then one may erroneously conclude that



<3275,

E(A3)* E(A5)**

wrong correct

n(E) = 7 and that fragments of both the type X1 and X2 occur in
E(AB)' In fact the central ring of this system belongs to F(AS)
and therefore is to be left out of the consideration; this is

indicated in E(A,) ik,

The properties (a), (b) and (c¢) fully characterize the empty
subsystem. Namely, every benzenoid system with the properties
(a), (b) and (c) can be understoocd as an empty subsystem of some
ABAH. Moreover, every connected benzenoid system with the
properties (a), (b) and (c) is the empty subsystem of a unique

ABAH.

In the following we shall give a few additional definitions

which will be necessary for the formulation of our results.
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The bonds of A which belong to F(A) will be called ¢-bonds.
Some of them belong also to E(A). Every ring of F(A) possesses

six ¢-bonds; the total number of ¢-bonds in A is thus 6n(F).

The bonds of A which belong exclusively to E(A) will be
called e-bonds. Every ring of E(A) possesses three ¢— and three

e-bonds.

If in a given Kekulé structure of an ABAH, all three e£-bonds
of an empty ring are double bonds, we will label this ring by

a star and call it a "starred" ring.

By definition, only rings from E(A) can be starred. Thus, for

example, in the Kekulé structures k, and k2 of A, the rings 1

1 1

and 4 are starred.
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In the following we shall say that the starring o induces the

Kekulé structures k.' and kz. We emphasize that ¢ induces exactly

these two Kekulé structures.
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2. THE NUMBER OF KEKULE STRUCTURES

IN AN ABAH: THE SIMPLE CASE

Let us first consider those Kekulé structures which have
the property that all e-bonds in them are single bonds. These

correspond to the case when none of the empty rings is starred.

Since all the full rings in an ABAH are mutually independent,
two different Kekulé structures can be drawn in each full ring
without this influencing the arrangement of the double bonds

n(F)

in any other full ring. Therefore we have a total of 2 Kekulé

structures of this type and in a given ABAH there must be K - Zn(ﬂ
Kekulé structures in which at least one e-bond is a double bond.
We proceed now to determine the number of Kekulé structures of

this latter type.

As a starting point we shall consider the simplest case
when all the "disturbing" effects are avoided. Let A thus be

an ABAH such that
(a) it possesses no fragment of the type Y1, and

(b) E(A) possesses no fragment of the type YZ'
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o

Let us start to construct a Kekulé structure of A by
choosing one of the e-bonds of the ring i to be a double bond.
It is immediately seen that then all the three e-bonds of i
must be double (and, hence, this ring becomes starred). Further-
more, the double bonds in all the three full rings which are
adjacent to i become fixed. It is also evident that if i is

starred, then i-1 and i+1 cannot be starred.
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This double bond fixation terminates, however, on the
rings which are adjacent to i and the positioning of the double
bonds in the rest of the system is not influenced by the

n(F)=3 gekule

starring of the ring i. Consequently, there are 2
structures of A such that the ring i is starred, but all other
rings from E(A) are not starred.

Extending this argument we arrive at the following conclusion,

which is the crucial one in the entire approach.

Assume that it is possible to make an arrangement of double
bonds in A such that the rings k, 1, m,..., g of E(A) are all
simultaneously starred. Assume that a total of f rings of F(A)
are adjacent to the collection of rings k, 1, m,...,q. Then
the starring of the rings k, 1, m,...,q causes the fixation of the

Zn(F)_f Kekulé

double bonds in f full rings and there remain
structures of A, such that the rings k, 1, m,...,q are starred,

but all other rings from E(A) are not starred.

pefinition. The "starring" o is a selection of rings from E(A),
with the property that it is possible to construct a Kekulé structure

of A such that all rings from ¢ (and only these) are starred.

The set of all starrings is o. By definition, g contains
also the trivial starring 9, which corresponds to the situation

when no ring of E(A) is starred.
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The rings from ¢ are adjacent to f (o) rings of F(A). In
particular, f(oo) = 0.

According to the above discussion, every starring o will

n(F)-£f (o)

induce 2 Kekulé structures of the molecule A. Whenever

f(o) = n(F), the starring ¢ induces a unique Kekulé structure.

If fragments Y2 are absent from E(A), then all Kekulé
structures of A are induced by means of the starring procedure,
and thus we conclude that

K(a) = 2' GBIt (1

geg

In order to make formula (1) applicable, we have to specify
the construction of the set o. For the case which we consider

in this section, ¢ is constructed in a rather simple way.

Rule 1. If fragments of the type Y1 are not present in A, then
¢ consists of all k-tuples (k = 0,1,2,...) of mutually disjoint

rings of E(A).

Example: A1. According to Rule 1, g contains the following

11 collections of mutually disjoint empty rings.
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g f (o) o f (o)
. bR B
1 3 2,4 5
2 3 325 _ 5
3 3 1.4 6
4 3 1,5 6
5 3 2,5 __6_
LIPS R
K(A)) = 27 4 502773 4 305775 4 305776 L 10777 2 59

3. THE NUMBER OF KEKULE STRUCTURES IN AN ABAH:

THE PRESENCE OF Y1
When Y1 fragments are present in an ABAH, then Rule 1, but not
eq. (1) is to be modified. Contrary to this, when an ABAH contains

Y., fragments, then Rule 1 holds and appropriate changes are necessary

2
in eq. (1). The considerations in the present and the following

section are aimed towards such modifications of eq. (1) & Rule 1.

The case when a fragment Y1 is present in an ABAH is simple
indeed. If the ring i is starred, then the ring j cannot be

starred and vice versa.
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O

O Q O O
0@

Therefore we have the following straightforward extension

of Rule 1, after which eq. (1) is applicable to all ABAH systems
which have no fragments of the type Y2.
Rule 2. ¢ consists of all k-tuples (k = 0,1,2,...) of mutually
disjoint rings of E(A), except of those which possess two empty

rings annelated in a linear mode to a full ring.

Example: Az. The rings 2 and 3 (which are annelated in a linear

mode) cannot be simultaneously starred. According to Rule 2, ©

contains the following 8 collections of rings.

o f (o) g f(o)
29___9_ 1:;3 6
1 3 1,4 6
2 3 2,4___6_
3 3
4___3

7=3 7-6
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Example: AB. The following three pairs: 1,4; 2,5 and 3,6
cannot occur in any ¢. According to Rule 2, ¢ contains the

following 15 selections of empty rings.

o £ (o) a f(a)

(=}
o]
-
-~
w
w

-~

W N N =
-

A oy s W0

(S B C B G B S €]

-

-

KAy =2 + 62773 + 6.2775 4 2.2777 = 250

As is seen from the above two examples, fragments of the type Y1
not only cause no serious difficulties, but are rather convenient
and considerably reduce the number of starrings which have to be

taken into account in the summation (1).

Let |o| denotes the number of rings in o. Then

2|o| < £(o) < 3]|o]

The left inequality results from the fact that the starring
of every ring in E(A) causes the fixation of the double bonds of
at least two new full rings. The right inequality holds be-

cause just three full rings are adjacent to every empty ring.
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From the above inequalities we obtain the following
bounds for K:
m

m
}orEx2” K cxam) <7 rEx2
k=0 k=0

n(F)-2k

where r(E,k) is the number of ways in which k rings can be
starred in E(A); r(E,0) = 1. (One should note that the numbers
r(E,k) play a central role in a recently developed "sextet

theory" of aromatic hydrocarbons [4]).

4. THE NUMBER OF KEKULE STRUCTURES IN AN ABAH:

THE PRESENCE OF Y2

When Y2 is present in an empty subsystem, eq. (1) does
not reproduce the correct number of Kekulé structures. The

reason for this is seen immediately from the example of A4.

g g’
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The starring o of the rings 1,2 and 3 has the property f (0)=6=n(F)
and thus leads to the fixation of the double bonds in all the
six full rings of A4. The corresponding (unigue) Kekulé structure

is k3. However, without moving the double bonds in the full

rings of A4 one can construct another Kekulé structure k

4'
which cannot be generated by the previously described starring

procedure. (Note that ring 4 is formally starred in k4, but
k4 contains e-double bonds which are not in starred rings. According
to our method, the starring ¢ would actually induce not k4, but 23

Kekulé structures of the form kS’)
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Kekulé structures in which not all e-double bonds be-
long to starred rings (e.g. k4) will be called "anomalous",
while those in which all double e-bonds belong to starred rings
will be called "normal" (e.g. kq, kz' k3, ks). Eg. (1) gives
in fact the number of normal Kekulé structures, which in certain

cases coincides with the total number of Kekulé structures.

A detailed examination shows that anomalous Kekulé
structures necessarily occur whenever three starred (empty)

rings are adjacent to a fourth empty ring.

Let g(o) be the number of rings of E(A) which in a given

starring ¢ are adjacent to three starred rings. We shall mark

these rings by A. For example,
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Let k be a normal Kekulé structure of A, which is in-
duced by o. Analysis shows that starting from k we can construct
29(9)_ 4 anomalous Kekulé structures without moving the
double bonds in the full subsystem. Since a starring ¢ induces

ZD(F)—f(O) normal Kekulé structures, ¢ will induce additional

ZH(F)-f(O)[2g(G)— 1] anomalous structures, that is a total

n(F)-£f (o) +g (o)

of 2 structures. This leads to the equation

K(A) = E o0 (F)-£f(0)+g (0} (2)

[ofAe)

which together with Rule 2 provides a general combinatorial
expression for the number of Kekulé structures in an all-

-benzenoid aromatic hydrocarbon.

The case g(g) > O can, of course, occurs only if E(A)
contains Y2 fragments. Therefore in the absence of Y2 fragments

in E(A), g(o) = 0 for all ogeo and eq. (2) reduces to eq. (1).

Example: AS.
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The pairs 2,6 and 3,5 cannot be present in any o. Therefore

the set ¢ contains the following 37 elements.

Io4 £(o) glo) a f(o) glo) o f£(o) gl(o)

T 0 0 1,5 6 o] 1,3,4,6 8 1

1 ] 0 1,6 6 [0} 1,3,4,7 8 1

2 3 o] 3 Bl 6 [¢] 1,4,6,7 8 1

3 3 o 243 6 O |3,4,6,7 ___8____1__

4 3 o 3t o B O |123.6.7 ___8____O _

5 3 o] 1,3,4 6 1 1,3,4:6,7__9____2__

6 3 0o 4,6,7 6 1

T3 . O 1,3,6 7 (0]

1,3 5 0 1,4,6 7 0

1,4 5 0 1,4,7 7 o]

2+5 5 0 3,4,6 7 o}

3,4 5 ¢] 3,4,7 7 6]

3,6 5 o 3,6,7 7 0

4,6 5 [¢] 1:3,7 8 0

4,71 5 o] 1,6,7 8 0

6,7__3___ 0

Application of eq. (2) gives

K(B) = 29 4 7.297340 | 5 59-540 o ,9-640 _ , ,9-6+1
+ 6_29-7+o n” 2_29—8+0 i 4'29~8+1 s 1‘2'3—9+0 i 1_29-9+2 - 1200

The determination of ¢ from the inspection of E(A) is an
elementary combinatorial task. The determination of f (o) and
g(o) is also straightforward. The four examples which we have
worked out demonstrate that eq. (2) & Rule 2 provide a relatively
easy and reliable way for the calculation of the number of

Kekulé structures even in extremely large ABAH systems. The
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previously known methods [1] appear to be considerably less

efficient.
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