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The theory of structure phase transitions in crystals with

internal degrees of freedom may be developed as the generali-
zation of the Landau theory of the second order phase transi-
tions. As it is known [1] the second order phase transitions
may not be connected obligatory with the changing of Fedorov-
Schénflies space symmetry group mp, which describes the atom
configurations in crystal structure. They may be connected

with some other symmetry changing. The well-known example are
the spin reorientation phase transitions in magnetic crystals
which change the order properties in the spin substructure of

the crystal structure.

This kind of symmetry is known as magnetic symmetry. It is de
fined by the specific group of the proper symmetry «/mm'm'=
©2'2'@1 of the stationary magnetic moment and by the way how
the component of the combined operators p¢é act on the coordi-
nates of the external (geometric) R and the internal (spin)

S subspaces of the magnetic crystal space.
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All the known kinds of magnetic symmetry P, Q, Wp and Wg
may be embedded in the construction of the wreath product
of two groups (2,3]

]
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1 ® and (® being the symbols of the wreath, direct and

semidirect products. The crystal space group mp, = mmodN is

restricted there by modulo N, N being a big figure.

~

P =ox ® 1' is the permutation group of states possible

for the spin coordinates §€ﬁ == being the proper part of the
orthogonal group of 0+(3) and 1' the time inversion ope-
rator which acts at the spin s of the point $(F) = (%,f) as

follows: 1' $(¥) = -3(¥).

In the cases of P - and Q - symmetry the composite space of
a crystal (S,R) = {(é,?)} is homogeneous in a sense that ope-
rators w(p) = p¢ and o(q) = g¢ of the generalized groups G(p)

and m(q) act globally on the every point (%,?)G(S,R) as rigid

motions:

po(5,3) = (p8,e%), peco'P) = pos 3omo_ , PSP, pezl,gempn
qe(2,%) = (qle]8,eF), qecdD = Qmea@mp,, 0e0=F, qe0
For the non-magnetic atoms ($,7) = (0,;), [¢] being the pro-

per part of the operator ¢€0 , .
P



-3 -
In the cases of Wp- and Wg - symmetry the space (S,R) is

inhomogeneous and splits into the set of homogeneous sub-
spaces of (S,R). The single component piq)k of the combined
operator <pi¢1...pi¢k...pi®N\¢i> acts locally on the spin
of the point (§,?k)E(S,R) according to the ordering ;k =

[ fi which is defined on R:

3

d ®

k o > k
<...pi e ¢i>(s,rk)

o > (wp) ~
(p; 8,00 ),<...|e;>€0 “SPBlo

]

modN

Q)k o = (bk a - (Wq) ~
e >(8,ry ) = (g “[egds.or).<...|le. >0 “cllo
modN

<...qi e

From the physical point of view the P- symmetry corresponds
to the spin to spin interactions and the Q-symmetry to the

spin to lattice ones [4].

It is important to note that the phase transition of the se-

cond order from the paramagnetic phase #mw1

1
) ®0 “ into the
0
magnetic ordered phase m(F) is connected with the decreasing
P

0% 0 , of the space symmetry group g, = o' ¢1u0?‘q>2u...t'm*¢j
o b

into the subgroup @* of the index j at the classical level
only. This decreasing is compensated by the appearance of the

new symmetry properties in the physical system on the level

(p,) (py)
of the magnetic group P = CD*¢1 um‘¢2 By ...Uﬂf‘¢j I which

o
00 0o L]
is isomorphic to m;m(p)&» @®. At the same time the factor 1( L)

] o T ]
is changed by the factors 1'1), 1(2') o 1(=2'2") ich pre-
serve the function &(P,T) of the temperature-press dependence
of the spin s at the fixed point ¥ for the 3-dimensional, com-

planar and collinear ordered magnetic crystals [5]. All the
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restrictions on the space modulation of the crystal
lattice parameters are removed in the theory of the mag-
netic symmetry [4]. The reason is that the group © o may
— (w)
always be multiplied by the local symmetry group Thelix

of the magnetic helix in the direct way.

The abovementioned theory deals with the magnetic interpre-
tation of the P-, Q- and W-colour symmetry groups. It may

be generalized on the case of crystals with internal degrees
of freedom which correspond to other coordinates than spin
ones. The generalized coordinates describe the internal mo-
tions of substructures of the crystal structure, for instance
the space modulation of the crystal lattice parameters connec-
ted with the charge density wave, the occupation wave or with
the wave of the atom deviations from the equilibrium posi-

tions.

Let us define now the electron density function of an "imper-
fect" crystal with the internal degrees of freedom in the
composite form p(¥) = pA¥) + sp (¥). The function 50 (¥) descri-
bes there the deviation of the electron density distribution
of the actual crystal from some “"perfect" distribution pe (L)
which one accepts as a basic one . In the zero approach one
neglects the weak perturbation of a system p°(?) connected
with the function Gp(?) and identifies the functions

p(¥) = p*(¥) and their symmetry groups mp = mpo:

0, 0(F) = o) =5° (1) =0 -0 (D).
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In the broken symmetry approach which is usual in the

theory of imperfect crystals [6-8] and in the theory of
the second order phase transitions [1| the perturbation
5p(?) is taken into account at the level of classical space
groups only. In this approach the symmetry group mp reduces
to the intersection (or the common part)} of the group mp

and the symmetry group @ of the perturbation function,

sp

mp = mp.nnﬁpcmp,- The group mp will be an untrivial subgroup of

@ . if the group & 5 has the classical subgroup mépc I which

§ §
is an usual assumption.

The broken symmetry approach is useful for the investigation

of the local properties of the lattices connected with the
local deviations of crystal structures. For the system proper-
ties depending on the structure of imperfect crystal as a

whole this approach turns out to be too rough. In the latter
case a more adequate approach will be the one which is based

on the laws of conservation or extension of the abstract sym-
metry group of a system under consideration [2,9]. In this
approaches the symmetry group of imperfect crystal in the ini-
tial state or after the second order phase transition is a sub-

group o of the wreath product B|@ which maps onto the

modN
initial basic space group mp, = mmodN isomorphically (Qpe—? mp)
or homomorphically (np — md)' In this sence the symmetry of

a crystal in the full correspondence with magnetic analogy

is not decreased but increased trough the second order phase

transition. Simbolically mo, goes to np where



Q.p =
pp

Q
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+ = . .p® = = <O
0 B0 (0+0) = 0, 8040 ;o el =5 0050 \o,

The relations between the groups entering in this symbolic

equation are illustrated in Fig. 1.

Fig.1

Euler diagrams show the relation between symmetry groups of
imperfect crystals with electron density function p(r) =
o* (P2 + &(F). In the broken symmetry approach

g
np . TR l)“nmc.Cm" - In the approach of symmetry

(h) (h)

conservation ﬂp "0, «»0, (h=p,q,w

P,wq)- In that of

symmetry extension ﬂo =ce mp“‘) where the proper symmetry
of the function p(3) at the fixed point r ischaacterised by
appropriate symmetrizer Gc[2,91. In every case n°£ 'ﬁ'ap\m‘, or

%58“m“%-'%99%o'%==°mmw

If one takes into account that the imperfect crystal in the

initial state has non-classical space symmetry group 991 then

the symmetry changing (=») into the state of sz may be perfor-

med through the structure phase transitions in three ways:
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The case 2° may be realized for instance as the remodulation
phase transition 6p1 =3 6p2 which doesn't affect (in the adop-
ted approximation) the basic structure ¢° (F) and acts in the
separate space of internal degrees of freedom of a crystal.

As an example of such transitions let us consider the physical

behavior of Na,Co, crystal [10].

Figure 2 taken from [10] gives the temperature dependence
§O(T) of the stationary space modulation wave vector of
N32C03 crystal betweem 620° and 4,2°K. Above 620°K the cry-

stal has a normal B-phase with the symmetry group

- e - 2! ki -
6 =Cn=Pa . H/2m Below 130°K it has the superstruc

ture §-phase with the constant wave vector of the commensu-
rate space modulation ﬁo = % a*+% c* and the generalized W

(Wp) _ 2(222Y)

-symmetry group g =P 5 in the phase space

(3 +&)*
(Y,R) = {(3,;)} quite analogous to the spin space (S,R)=
{[5,;)} of the magnetic crystals. Between 620°K and 130°K
according to [10] the crystal has the incommensurate y-phase
with the property of the wave vector of the deformation wave

+ 2 o N
q,(Tq) #9,(T,) if T, +T,.
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Fig_z The temperature dependence of the wave vector of the modula-
ted wave for the incommensurate \,1(fzom A to C), vz(c to G) .,
Yi(c to I} and commensurate (I to K) &-phases of Na2c03 crystal
in the plane 3", &" of the reciprocal lattice. a: 470° K, B:
370° &, ¢: 300° K, D: 295° K, E: 275° K, F: 235° K, G: 200° K,

o
H: 175° K, I: 120° K, 3: 20° k and K: 4,2° K (according to [10])

But Fig. 2 shows that actually the y-phase splits at least

into two incommensurate phases Yq and Yo Let us suppose that
the temperature dependence qa,(T}faqc,(T)=O of the wave vector
between 620° and 300° K corresponds to the homogeneous defor-
mation of the compression of the modulation wave in the direc-
tion of . The remodulation phase transition at approximately
300° K may be connected with a shear deformation of the modula-
tion wave. Accordingly the slope of the curve GO(T) changes

into gz (T) + qzu(T) = 3’2’ within the interval 300° to 200° K.
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Then follows the complicate remodulation process of the
continuous transformation of the modulation wave to the

commensurate state which ends at the point 130° K of the

lock-in phase transition. The outlined hypcthetical scheme
is present at Fig. 3.

yz—phase between 3000 and 200° K



Fig.3

In order to receive the Wp-symmetry groups ﬂp
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The hypothetical scheme of the remodulation phase transition
g ﬁvz in NBZCO] crystal. In the v.l-phase the harmeonic atom

displacement wave has the proper symmetry group

(2% (2%)
) _ z (2) 2(2*
nﬂp =1 ® p(hfz)"ml(b) ——L '_(m‘ y preserving under

compressive deformation of the modulating wave in the direc-
tion of the local axis y, which lies in the plane XZ of the cry-

stal. Shear deformation change it 1nto centroaff;ne symmetry
(2%) A* 2 (2A*
z 22 2R 202?
group 1 ap
(b/Z)“ A‘(bh) m A*

i of the phase
(m™)

¥,- The abstract symmetry group doesn't change through the
phase transition ‘v,?—"rz but complex antisymmetry group goes
into the centroaffine ones A or A*. At the fixed level the phase
symmetry group ﬁ:‘:) (2'2‘)91 ‘%

The symmetry and complex antisymmetry elements are shown

goes into subgroup ﬂip) =1 1
2

black or white respectively.

modulation of Na2C03 let us take the complex coordinate

Qa =

i
ﬂew

as the order parameter [8,10] and construct the

phase space {($,f)] of the crystal. We shall describe the

of the phase

periodical perturbance of the threedimensional basic struc-

ture % () of Na ,C0, in accordance with [11,12] as the phase

modulation wave r

R R > i
lk—rl+rk+Ak.51n(q°-rl+mk) where ryy is the

coordinate of the atom k in the unit cell 1. Then we combine

o - . . - -+
each coordinate Iy, with the appropriate phase vector wk=(n

kl‘Pk)

which lies in the local Gaussian plane x,iy at the angle ®)

to the axis x. It is supposed that all the local systems of

reference x,1iy,z are parallel to each other, the unit vector

of the phase normal Hk being parallel to the local axis Z and

axis Y of the crystal, y|z, x|% in the plane X,Z.
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Symmetry groups which act in the phase space (¥,R) are
called phase symmetry groups. They may be obtained from

the known magnetic P - symmetry groups [2,3,5,13-15] by
replacing the spin inversion operator 1' by the operator
1* of complex conjugation, 1% Qa = Qg, i.e. the phase inver-
sion operator ¥ 3(r) = -¢(¥), 1¥¢ = p+n. Applying the phase
'Zﬂia‘t'n ie

equivalency condition %QE = e e = nelw [10] one

may verify that Nazco3 crystal has the superstructure parame-

ters A = 23 + 2&, B =B, & =24 + & in the commensurate §-phase
with aO = % a¥ 4+ % %, The nodes of the appropriate super-

structure lattice have the phases ($,}) equivalent on modulo
27 while two nodes r and T + % have the opposite phases (3,?)

and (-3,7+a+c). Then the junior Wp-symmetry group of é-phase
2(22,2y)

will be 3" = p % ————=— the sense of the color vector
[0 (a+c) m
(3+8)* being (a+c)* - (4,r) = (%, 7+3a+E) = (-¢,r+a+c) and that

of the positional rotation operator being

(2,2 ~
2 % ¥ 3(000) = [2,8](2,(000)) = 7(101)
(Y,¥1/,)
{2..2.)
z'yt (g n S - § i
2(¥Y1/2)[n,3](100) - [n.2y(3)](’2‘y(1oo)) = [n,e+3-](001) /see Fig.4./
/% " N 51/ i/
s S
4 -
T A
iR/3 7\ /% 0
e
-» //
Ci 273

4Ry
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Fig.4 rhe enlaregedunit cell of the superstructure commensurate
&-phase of Na,C0, erystal with the parameters A=2342¢, B=b,
E=23+2 according to [10]. The phases of the nodes are shown.
) (28 222,29
Space symmetry group symbol mA =1 Bp[a4c).l —

corresponds to the point group of the shadened unit cell.

The results of the full symmetry analysis of some of the mo-

dulated phases of Na2C03 may be summarized as follows:

a, = szint 2 nfgace 8o,
o —— e —
G’ijp) -1 Py 2 fﬂ:‘{ég 2127 ilzi’:) & P(5+E)/2%?,62OO>T>3OOOK
m:,:p) = 1(2;) g p 1 % 1 8 P 2.8 /2121,300%r>200%
méwp) = 1(2:) 3 13—(31 T<130%K
(a+c ) m .
where a; - 6o (%) = sp (@), 2, = nf‘;i"t & 230°%. For the full

symbol of the @

s ,Space group see Fig.3.

One can see that those groups are in close relations with
the symmetry group of the normal B-phase Ry = ™e 0y =

= q* 2 -
1 ﬁpa+c 1 = 1 and that the phase transitions between Yi
and é-phases are the ones of the phase remcdulation types.
(2%)
The direct factor 1 2 preserves the phase vector at every
(2%)
point of the complanar modulated crystals, 1 z w(;)=@{;);

the next one gives the proper symmetry groups of the one

dimensional modulation wave.
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Let us stress in the conclusion that in generalized theory
of the structure phase transition one must expand Landau po-

tential in powers of the composed order parameter N =N +"§p

to construct the invariants of the generalized symmetry group

8,=05 00 of a crystal with internal degrees of freedom.

The classification of those transitions may be obtained accor-
ding to the irreducible representation of the group Q&;ﬁsgtmob
This classification will be more extensive than the ordinary

one because all the groups P- and Wp-symmetry @ allow the gra-

. s : : . 3_o¥_ o 2 : :
dient Lifschitz invariant Qa 55 Qq Qq s Q& without restrictions

(compare the analogous result in [10]. In Q and Wg-symmetry

[

approach there may be some restrictions on the space modulation.
In any case one can assert that space modulation is not a rarity
butageneral phenomenon in the crystal world. Then the problem

of the space modulation of crystals appears to be a problem

of the physical model of the crystal and the choice of appro-
ximation. A lot of interesting physical properties of the space
modulated crystals (such as the phase and amplitude fluctuations,
the polarization waves in dielectrics, the proper and improper
ferroelectricity, the lock-in phase transitions etc. [10,16-20]
may be predicted and explained in the frame of the symmetry
generalization of the Landau second order phase transition

theory.
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