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Abstract. The generation of the infinite modalities for
combining isoprene units into acyclic polyisoprenoid
gstructures can be performed using picture grammars, in
this case web grammars. They consist of a finite set of
rules which, with restrictions concerning the mode of
linking (regular 1.e. head-to-tail, or standard i.e.
head-to-tail, tail-to-head, head-to-head, tail-to-tail),
afford the desired infinite collection of isoprenoid
structures. Vice-versa, the parsing algorithm enables an
analysis of a given structure in order to find out if it
is isoprenoid of the required type. Future work is
directed towards generalizing this approach to include
cyclic isoprenoid structures.

1. Introduction
Given a molecular formula of a substance and knowing

that the substance has an isoprenic skeleton, the problem raised
is to find all the isoprenoid structural formulas corresponding
to the molecular formula. In other words, the problem is to
build all the isoprenoid graphs which can be decomposed into n
isoprene units. Thus, we are confronted with a problem of gene-
rating a potentially infinite set of isoprenoid structures. The
patural tool suitable to approach such a problem is the theory
of automata and formal grammars, which has already been used in

some problems of information retrieval in the field of chemistry.
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But the existing applications of formal grammars in chemistry
(see, for instance [1] and [2] ) are all concerned with their
classical form, due to Noam Chomsky [ 3]; this form was built
having in mind natural languages, which are essentially of a
concatenative, linear structure. Chomskian grammars are equally
efficient in the study of the syntax of programming languages,
because programming languages share with natural languages the
property to be linear.

Structural formulas in chemistry are no longer built in
a linear way, Similar situations arise in many other fields and
the problem was raised fifteen years ago whether one cannot
build some generative devices which, on the one hand, are simi-
lar to Chomskian grammars, and on the other hand, are suitable
to generate polydimensional structures (i.e., structures which
are represented in euclidian spaces with several dimensions).
The answer to this question was the beginning of the study of a
new type of generative devices, called picture grammars, where
the elements of the terminal alphabet are graphic (usually bi-
dimensional) entities, whereas concatenation of these elements
consists of geometric operations. So far, many types of picture
grammars are used in many different fields of research, especial-
ly in Pattern Recognition related to Physics, Biology, Genetics,
Architecture, Visual Arts etc. Curiously, no application of
picture grammars in Chemistry appears to be known so far in the
literature, despite of the fact that such an application seems to
be very natural. Even usual generative grammars were used very
seldom in Chemistry ; as we have mentioned, this was done only
in the field of information processing; no theoretical problem

concerning chemical structures was approached from a generative
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point of view. Thus, it is necessary to 2:xplain the relation
between the generative approach and the already known combina-
torial approach which is usually done by means of Graph Theory.

The generative approach is concerned with the process
of formation of chemical structures of a definite type. We are
looking for a kind of (logical) machine which is able to pro-
duce exactly the structures we are considering., The way in
which this machine works is the most essential information we
can obtain with respect to the considered structures. Thus, we
can say that the generative approach is an extrapolation of
the combinatorial one. Some combinatorial tendencies are trans-
formed into recursive (self embedding) rules, by means of which
our machine has an infinite generative capacity, in contrast
with the combinatorial approach, which is usually dealing with
finite graphs. Among the rich literature devoted to picture
grammars, two types of such grammars were used as suitable to
approach acyclic isoprenoid structures : web grammars [4~6]
(they are defined in the next paragraph) and array grammars.
The terminal alphabet will be the set of isoprencid units,
whereas head-to-tall isoprenoid acyclic structures are obtained
by means of head-to-tail linkings of isoprenoid units. The
strings which will be generated in this way correspond to all
head-to-tail isoprenoid acyclic structures. The set of these
structures is infinite, but we are able to read them in a fi-
nite device, which is just the picture grammar generating them,
This grammar is the deep structure of the considered type of
chemical formulas, in contrast with their surface structure,
which consists of the syntactic structure of formulas generated

by the grammar.
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One of our reasons to prefer web grammars follows from
the possibility they offer to analyse the given structures by
using reduction rules (obtained by inversion of rewriting rules
of the grammar). This corresponds to testing whether a given
structure is or is not of a given type. In this way, the same
grammar is used to solve both the problem of generation and of
checking.

Picture grammars, like classical generative grammars,
are particular forms of algorithms. Thus, they are algorithmic
descriptions which allow to transfer the problems to a compu-
ter. Picture grammars allow to build a compiler and to achieve
by means of a computer both the construction and the verifica-
tion of structural formulas. Thus, the problem of isomeric
structures (to each molecular formula correspond several struc-
tural formulas) can be easily solved.

Array grammars will show their advantage when dealing
with generation of isoprenoid acyclic chemical structures with
an odd number of isoprenoid units, with head-to-tail linkage,
which admit a symmetry axis.

Finally, we remark that the generative approach allows
to introduce into chemistry the distinction between chemical
competence and chemical performance. When an infinite class of
chemical structures is generated by a grammar, we can better
understand the common denominator of these structures, which
is given by the structure of the grammar. The chemical compe-
tence is just this infinite potentiality defined by the grammar.
Only a finite part of this potentiality is actualized in each
case; it defines the chemical performance., The problem of ge-

neration of acyclic isoprenoid structures with regular (i.e.
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head-to-tail) linking and those with standard (i.e. head-to-
-tail, head-to-head, tail-to-head, tail-to-tail) linking be-
comes very interesting when new theories are appealed to,
namely those which endorse picture languages. For this problem

we found a solution using web languages.

2. Web grammars. Introductive notions

In 1969 Pfaltz and Rosenfeld introduced the noticn of
web grammar, whose language is a set of labelled graphs ('"webs")
and whose productions replace subwebs by other subwebs.

Let V be a finite nonempty set, whose elements will be

called labels. A web on V is a triple w = (Nm, E , £ ), where

w w

Nw is a finite, nonempty set, its elements are called the
verttices of w ; Em is a set of unordered pairs of distinect ele-
ments of Nm, these pairs are called the ares (or edges) of w ;

i) is a function from N into V. The pair (N , E ) = G is a

w w W w w

graph, called the underlying graph of w. The distinctness of
the terms of the pairs in Em implies that the Gm is loop-free.
The vertices m and n are called neighbours, if (m,n) is in Ew‘

We call m and n connected if there exists a path m=m =n,

S RRRRELN
k 2 1, such that my (S Nm, 1<i<k, and (mi,mi+1) E; 1gi<k. I
any two nodes of w are connected, w itself is called connected.
let o,w be webs on V. We say that o is a subweb of w if : NQ
is a subset of N ; E is the restriction of E to N ; £ is
w [ w a a

the restriction of fm to Nu' The complement of o in w is the
subweb w-a defined by restricting E and f to the subset Nw__Nu
of Nw'

A web grammar is a 4-tuple G = (V, V., S, P), where V

is a finite, nonempty set, called the wocabulary; V,

T is a non-
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empty subset of V, called the terminal vocabulary ; SEV - VT

is called the Znitial symbol ; P is a finite, nonempty set of
triplets m = (a,f,¢9), called produections, where o and B are

connected webs on V, ¢ is a function from N, x Na into ZV

B
(the set of subsets of V). The significance of the function ¢

will be discussed below.

We say that w' is directly derivable from w in G if w,
w' are webs on V, and for some (a,B,¢) in P : (i) o is a subweb
of w ; (ii) for each mENa, all labels of neighbours of m in

w-a are in ¢ (n,m) for some nENB; (iii) for all m,, m, in o

p? any neighbour of ml in w-a that has a label in

cp(n,ml)ﬂ cp(n,mz) is also a neighbour of my ; (iv) w' is obtained

and all n€N

from w by replacing a by B, and joining each n(—:—N‘3 to all the

neighbours (in w'-f = w-a) of each meNOl whose labels are in
#(n,m). Formally : N , = (N -N U Ny = N, _oUNgi

=Bl EEU{(n,p),neN

w?

E PEN, _.; (p.mEE  and

B B 8

wt R’

1,(P) € o(n,m) for some meN Y s R f IN .

w? w-o W' w-o

Condition (ii) above provides that every neighbour of (some
vertices of) o in w-a will be joined to (some nonempty set of
vertices of)B. Thus no edges are '"lost" or end up "dangling".
Condition (iiil) eliminates labelling conflicts which arise
between edges which coincide under the replacement of o by B.
It also guarantees that all productions and, hence, derivations
are "reversible'". The function ¢ in a production specifies the
embedding associated with the production : i.e., it specifies
how to join the vertices of B to the neighbours of each vertex
of a. This too is done in terms of the neighbours' labels.

Each nE‘NB in joined to those neighbours (in w-o) of each mENu
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whose labels lie in a certain set ¢(n,m). Condition (ii) thus

insures that, for each mENd, some neN will in fact be

B
joined to every neighbour of m in w-a, since each such neigh-
bour has a label in at least one of the sets ¢(n,m).

We say that w' is derivable from w in the web grammar G
if there exists w = Wypeens Wy = w', k 2 1, such that Wy 41 is
directly derivable from wy, i €1 < k. By the language L(G) of
G is meant the set of webs on VT ("terminal webs") that are de-
rivable in G from the "initial web'" consisting of a single
vertex labelled S. Any web derivable in G from the initial web
is called a sentential form of G.

Proposition 1. Any sentential form of a web grammar is
a connected web.

It will be noted that by our conventions, webs always
have nonempty sets of vertices, so that the "null web" € never
occurs in any web language. If desired, it can be explicitly
adjoined to a language. Alternatively, its presence in a
language can be made possible by allowing productions in which
B = e. To ensure that such productions can never disconnect
derived webs, one can simply require that ¢ is empty (i.e.,
¢(n,m) = ¢ for all m,n) in any such production, so that by con-
dition (ii), the production can be applied only if o has no
neighbours.

In string grammars, L(G) can equivalently be defined
as the set of terminal webs which can be '"parsed" (that is
from which the initial web can be derived) by applying pro-
ductions of G in reverse (B is replaced by o, rather than a« by
g). In the web case, a production 7 = (a,B,9) is applicable only

if conditions (ii) and (iii) hold, and its application makes use
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of the embedding function ¢ ; thus to apply 7 in reverse, we
must specify how the reverse embedding function is defined, and
we must be able to guarantee that conditions (ii) and (iii)hold
for the reversal of 7. Let " be the function from Na x N, into

B8

2V defined by ¢R(m,n) = ¢(n,m) for all m E,Na, n €N and let

Bl
g = (B,u,mR) ; then we have

Proposition 2. Let w' be directly derived from w by
applying m to a particular instance of o as a subweb of w. Then

m, is applicable to the resulting instance of B in w' and the

R
result of its application is w.

We say that a terminal web can be parsed (analysed) in
G if the initial web can be derived from it by applying pro-
ductions of PR = { “Rl m €P }. By Proposition 2 and induction,
if w is a terminal web of G, it can be parsed in G by simply re-
versing its derivation. The converse follows similarly, since
clearly (”R)R = 1 for all w. We thus have

Proposition 3. The set of terminal webs that can be
parsed in G is exactly L(G).

In practice, the function ¢ specifies how to replace a
by B in terms of the vertex labels of o and B. Thus, ¢ is a

V. we(M,N) = {Q} " would

function from fB(NB) X fa(Na) into 2
mean : "Join vertices labelled M from B to the neighbours la-

belled Q (in w-a) of the vertices labelled N from a".

3. The generation of regular acyclic isoprenoid structures

using web grammars

Any grammar, particularly a web grammar, can be regard-
ed as a mechanism which, using a finite number of rules, can
generate an infinite number of strings which form a language.

Taking into consideration the graphic aspect of these kinds of
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chemical structures we could construct a web grammar generat-
ing a language which is the set of all acyclic regular iso-
prencid structures, i.e. with regular (head-to-tail super-

script R) linking [ 7]

Gy = (V, Vg, S, P), where V=V, U Vo
VN ={8, B, D}, VT = 8z by ey d; & F
P = { L 1<i=<4y = (a,B,9),a,B, webs onV,

oo BN X BN - 2V

(Elements of VN are of a generic, categorial nature,
whereas elements of VT are individuals. This is the reason why
the former ones are represented by capitals, like sets in Set
Theory, whereas the latter ones are represented by small let-
ters of the latin alphabet, like elements of a set).

The productions LIE 1 < i <4 used by G% are the fol-

.1\. , 9 , where ¢(n,S) =@, anEfB(NB)
B

d { el
ID ’ P
9(D,B) =

D 9(a,D) = {d}
[ P » where
o(n,D) = ¢,¥h#a,nef, (Ny)
B

lowing

¢{d,B)

n

i where

|
-

{c}

;9 ’ where p(e,B)

<
=0
5
(
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In production m the existence of two vertices labelled

1!
B for the web B shows the possibility of linking a new isoprene
unit either to the left or to the right of the existing iso-
prenoid structure. Production Ty represents the linking edge
which always appears between two isoprene units. Production ﬂa
takes into account that the link which is formed between two
isoprene units is a regular one, and that we intend to obtain
acyclic structures. The generation process of regular acyclic
isoprenoid structures takes place from top to bottom and can
and

continue by using the productions w Production m, Te-

2 g
presents the end of the concatenation process on the branch on
which it is used. We can observe that in any case a rule of type

Ty is the last production which is applied in generating struc-

tures of the required type.
When we intend to generate structures with p isoprene

units (p =2 1), we apply (p-1) times each rule w, and w and

2 3’

(p+l) times rule Ty

Example of generating an acyclic regular isoprenoid

structure
8 my a m a m a m
* — —io 3 e IV
b b b
S,
B & d B B
D

0oCT ® o
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In the process of analysis of an acyclic regular iso-
prenoid structure one uses the reduction rules obtained by in-
verting the rewriting rules (productions).

If by application of the reduction rules to a given
structure we obtain the initial web consisting of a single vertex
labelled S, then the analysis ends successfully, and this means
that the given structure is of the required type. The reduc-

tion rules associated to the grammar GR are the following

w
a
"? =( : ) E » g » where ¢.(8,n) = 9(n,8) = 9
B ¥n QfS(NS)
d "\
g = s 9 where (B,d) = ¢(d,B) = {c}
2 D L " R ) ‘FR 3 ¢ 3
9p(B,d) = o(D,B) = @
a \\ op(D,a) = ¢(a,D) = {d}
n;‘ " b . % | » where [ep(D,n) = ¢(n,D) =
< / ¥ f a, n€L,(Ny)
B
“5 = ( e E ) 0 } , where o.(B,e) = o(e,B) = {c}

The language generated by G% consists in the set of all
acyclic regular isoprenoid structures along whose paths one may
proceed following the generating direction, namely from top to
bottom. The following algorithm gives the labelling with ele-

ments from the terminal wvocabulary VT'
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Algorithm of labelling

1. We label "e" all the vertices of degree 1 of the
graph except the first vertex of this type (which
will be labelled "a") we meet when proceeding(going)
along the graph. We will take as a starting point in
going along the graph the vertex of degree 1 which
is situated at a distance equal with 2 to a vertex
of degree 3. If there is no such vertex, then the
structure is not of reqguired type.

2. We label "e¢" all the vertices of degree 3.

3. All the unlabelled direct descendants (taking into
account the direction we have chosen) of the verti-
ces labelled "c¢" will be labelled "d".

4. All the unlabelled direct descendants of the verti-
ces labelled "d" will be labelled "a"

5. All other unlabelled vertices will be marked "b".

This algorithm is the basis of the analyses of a given

structure by means of the constructed web grammar G&. Thus, the
given structure will be labelled or relabelled with elements
from VT according to the algorithm, after which the analysis
starts. If the analysis ends successfully, then the number of
the isoprene units that compose the structure is given by the

number of applications of the reduction rule ﬁg plus one.

Example of analysis of a given structure

We consider that the structure given for analysis has
been labelled with elements from VT in agreement with the

given algorithm.
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R R R R
a
a n4 ﬁ4 a ﬂ3 a Ta a “2 a Wl s
h —o b —e b —po b —eo b e—— b ——t o
C c c c c
d : e d d
% e & € p e D B B B
b b
c c, c
e e B e B B

The analysis ends successfully, therefore the given

structure is a regular acyclic isoprenoid one formed of two

R R R R

isoprene units. The sequence nR ﬂ4, “2’

47 “4, W3’ Ff represents

the analysis made.

4. The generation of standard acyclic isoprenoid

structures using web grammarsg

Standard acyclic regular isoprenoid structures (super-
script S) have head-to-head, head-to-tail, tail-to-head, or

tail-to-tail linking [ 8] :

S _ -
Gy = (V, Vg, S, P},  where V= vy U Vop
VN = {8, A, B, D} , where VT ={a, b, e, d, e}
P = {"1' 1 <i <10 /ni = (a,B,9),a,8 webs on V,
\'4

9 fB(NB) x fa(Na) 2 2 )
The productions L 1 £1 <10 wused by 63 are the
following
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where ¢(n,8) = @, VnEfB(nB)

L 1%]
[l =2
R-]

L SR

y 9 > , Wwhere 9(n,S) = 9, VnEfB(NB)

I" ) o(a,A) = {d}
. , ¢ , where
P {;m(D.A) =9

{w(d,B) = {c}
where
¢(D,B) = @

-

[ 1o}
g
O—}O_.W
[ =1

L e

eow
*—e
=N
]
S~~~

a #(a,D) = {d}
D b ] where
® 2 * : o(n,D) = @, ¥n# a,
d 5 L n € £,(Ny)
-

9(a,D) = {a}
where (e(n,D) = @, ¥n # a,

{ 2=

o oW

-
N~

n € f(Np)

f

o(a,D) = {d}
v ¥ » WheTe  (o(n,D) = @, ¥n 7 a,

d

A L n EfE(NB)
~

b

c

¢(b,D) = {a}
" where
L d L9 - ¢(n,D) = @, ¥n # a,

A t n € fB(NB)
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?19 = ( & ’ s ;@ ) ’ where 9(e,A) = {d}
B e
o = ( e, o ¢ ) »  where ?(e,B) = {c}

The observations related to the significance of the
productions in the web grammar G% are valid also in the case
of the web grammar Gg
respondences between the elements of the two grammars

if we take into account the following cor-

R s
Gy Gy

B A, B

™y Ty Ty

1T2 1T3, ‘TT4

Tq Tgs Tgs Mg, Tg
Tq 9. M0

Exemple of generating an acyclic isoprenoid

structure with standard linking

™
2 a "3 a "4 a 5 a
c c g & [
d d
B B . =
A a D a a

D D b D

S
L]

=3

©




the

P

0

o=

The

grammar

*—e
U o

Tw
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0 M0 10

reduction rules using in analyses associated to

Gﬁ are the following

[ 17)]

=}

=]
\___/

where

where

where

where

where

op(8,m) = 4(n,5) = @,

¥n €

oR(S,n)
W E £

ep(A,a) =
9p(A,D) =

og(B,d)

9p(B,D)

Pgp(D,a) =

op(D,n) =

7

fS(NB)
= 0p(n,8) = @,
s (Ng)
9(a,A) = {d}
e(D,A) = @
= ¢(d,B) = {c}
= ¢(D,B) = @
¢(a,D) = {d}
¢(n,D) = @
a, n € fB(NB)
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op(D,a) =

nR = b i 2 ] where
6 o RO ep(D,n) =
¥n # a,
op(D,2) =
ﬂs = € 4 2 5 wR , where @R(D,n) =

B d

A ¥n # a,

L ]}

b og(D,b) =
R c
g < ? , where po(D,n) =
8 B d § SR R
A ¥n # b,

» g ) , where op(A,e) =

El
© =
[}
o
L 1ol
L ]

R
Ty = ( g ; E » 9y ) , where wR(B,e) =

9(a,D) = {a}

o(n,D) = @
nEfﬁ(NB)
¢(a,D) = {d}
¢(n,D) = @
nEL,(N,)
¢(b,D) = {a}
¢(n,D) = p
ntB(NB)
9(e,A) = {d}
9(e,B) = {c}

On going along a standard acyclic isoprenoid structure

which forms the language of the web grammar Gﬁ the direction of

its generation is followed, namely from top to bot

tom. The

labelling of vertices with elements from VT of a given struc-

ture which is to be analysed by using the reduction rules, is

indicated by the following algorithm

Algorithm of labelling

1. We label "e" all vertices of degree 1 in the graph

with the exception of the first vertex

of this type

met when going along the structure, which will be

labelled "a".

2. We label "c" all vertices of degree 3.
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3. All the unlabelled direct descendants (taking into
account the direction we have chosen) of the vertices
marked "c¢" will be labelled "d".

4. All the unlabelled direct descendants of the verti-
ces labelled "d" will be marked "a".

5. If the distance between a vertex marked "a" and
the first vertex (met when going along) labelled
“"e'" is longer than 2, then the direct descendant
of the vertex marked "a" will be marked "a'" too.

This step is applied once in each case.

6. All the other unlabelled vertices will be marked "b'".

Example of analysis of a given structure

We suppose that the given structure for analysis has

been labelled with elements from VT in agreement with the given

algorithm.
'ITR TIR TTR TTR T'l'R
9 10 i 8 a 10 10
= s — — 2 —_—
c . c
d d d d d  d d d d
a a a 2 a a
b D
b & b b b D b
c A d ¢ ¢ B <

R R R
1

b
c
e e e ¢
R
a 115 a 113 a 114 a
—C —_— — —_— —_ °
d o< P NG \ $
d d
a b a D A A
D D

o

o

[¢]
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The analysis ended successfully, therefore the given

structure is an acyclic isoprenoid structure with standard link-

1TR
9’ 710’
R R R R R R R :
Tar M1g» 10 Tgr Tgr Tyas To represents the analysis made.

ing, formed from three isoprene units. The sequence nR

5. Discussions and conclusions

1t is easy to observe that the language generated by G%
includes the language generated by G% 5

Pfaltz and Rosenfeld, continuing the study of the web
grammars, reached an outstanding result., Thus, the relation be-
tween the web grammars and the web acceptors is formulated in
the following theorem

For each web grammar G there is an acceptor M, so that
the set of terminal webs on VT accepted by M, marked T(M),
coincides with L(G), the language generated by G.

Thus, the problem of generating acyclic isoprenoid
structures with regular or standard linking can be continued in
the sense of constructing a compiler and of obtaining by means
of the computer a constructive process of these structures. The
web grammars G& and Gg are the basis of the construction of con-
text free grammars for the linear codification of the structures
under examination, a fundamental problem in the representation
of the structures.

The generation of a certain subset of acyclic regular
isoprenoid structures (mentioned in the introduction) by means

of array grammars will be discussed in a further paper.
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