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Introduction

The structures adopted and the bonding present
in a wide range of cage and cluster species, inclu-
ding the boranes, the carboranes, metal clusters
and certain organic caticons, have been the focus of
considerable attention over the past two decades.
We report here continuing work (1) which has revealed
how the structure and stability of these species may
be analysed and Interpreted in terms of thelr bonding
topology. Many boron cage molecules exhlibit an unus-
ually high chemical stablliity coupled with a rather
Jow chemical reactivity. Examples would include the
dianions (2, 3) Banz_, where 6<€n< 12, and alsc the

carboranes (1) C B _oH where 5€n< 12. Moreover,

>
it has been demonstratgd (5) that close analogles
exist between the skeletal bonding in boreon cage
compounds and that found iﬁ metal clusters, espe-
cially those of high nuclearity (6). More recently,
it has been shown that the general treatment outlined
here may be applied to certain organic cations (7},

such as the (CH)5+ cation and the (CH)62+ dication.
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All of the specics referred to above may be viz-

ualised as being constructed from triangulated, poly-
hedral systems, which for convenience we shall term

deltahedral systems. Tor systems having a total of
n vertex atoms, TCAC-MO calculations by the Extended
flickel method have led to results consistent with
the presence of n + 1 skeletal bonding orbitals(8).
Upon Filling fhese orbitals the system acquires a
total of 2n + 2 skeletal bonding electrons. In our
treatment of such systems we demonstrate how the n + 1
bonding orbitals may be generated directly from the
bonding topclogy. We also extend our analysis to
systems having other than triangular faces. Tt is
sur belief that this approach may well prove to be
of value in the further understanding of the species
discussed gnd pessibly also in the development of
polymers of high thermal stability and catalysts of
novel reactivity tased on these species.

Algebraic Graph Theory

The basic Lool which we shall employ in our analy-
sis is algebraic graph theory (9). Lt is well-known
that the topology of a chemical species may be form-
ally represented bty a graph, and that from the adja-
cency matrix of this graph one may determine the
orbltal energy scheme for the species within the
simple Hiickel onc-electron framework (18). 1In many
semi-empirical theories a satisfactory treatment of
electronic structure is possible [rom a purely topo-
logical analysis of the system, [for the integrals not
directly determinable from the topology remain as
parameters in the equaticns. If has been shown by
Ruedenberg (11) how the topological elfects may be
separated out from the usual secular equation
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[H - ES| = O @@

The energy and overlap matrices are first resolved as

follows:
(2)

and

g = I + (3)

where 1 18 the unit matrix, ¢ and B are the illckel

coulomb and resenance integrals respectively, and A
i1s the adjacency matrix of the graph representing the
species in question. Substitution of ecuations (2)

and (3) into eguation (1) then leads to the result

A - a1l = 0,

where X correponds to the energy elgenvalues
relationship
a +
1 0+

by
A3

F =

The eigenvalues of the adjacency matrix thus

the Hiickel energy levels of the species.

Polygonal and Polyhedral Species

In both the pelygonal Can systems, such
and the polyhedral boranes and carboranes on

the four valence crhitals

atom may be eclasslified into cne external orbital,

)y

via the

yield

as benzene,

n vertices,

assoclated with each vertex

two

eguivalent twin internal orbitals, and one unigue inter-

nal orbital. The external orbitals are used
case to form one o bond from the vertex atom

ernal atom or group.

in each

to an ext-

The twin internal orbitals mutu-

ally overlap to produce either a polygonal or polyhe-

dral framework of vertex atoms,
ing to the splitting of the 2n orbitals into

and n anti-bonding orbitals.

this interaction lead-

n bonding

Global mutual overlap of

the n unique internal orbitals generates additional

bonding and anti-bonding orbitals, with relative ener-
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gies which may be determined from the elgenvalues of
the matrix A.

In order that facility be gained in the application
of our approach, we start with the familiar example of
the benzene molecule. Benzene may be viewed as the
two-dimensional analogue of the three-dimensional del-
tahedral species. 1In benzene the external and twin
internal orbitals are sp2 hybrids whereas the unique
external orbital is of p type. As illustrated in Fig-
ure 1, the twelve twin internal orbitals interact pair-
wise to form six bonding and six anti-bonding orbitals,
corresponding te the o bonding and the o*¥ anti-bonding
orbitals of the gix carbon-carbon bonds in the usual
MO treatment (12). The six unique internal p orbitals
interact to give the familiar eigenvalue spectrum of
the planar CG hexagon, producing three o bonding orbi-
tals and thrce o* anti-bonding orbitals.

Anti-bonding

Bonding

Figure 1. 'The enerpy level pattern in the planar CG

hexagon, i.e. in benzene.

An entirely analogous treatment may be applied to
the deltahedral boranes and carboranes. The external
and unique internal orbitals may now be considered as
sp hybrids and the twin internal orbitals as p orbitals.
Pairwise interaction between the ?n twin internal orb-

itals, which is responsible for the surface bonding in
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the polyhedron, leads similarly to n bonding and n
anti-bonding orbitals. Such pairwise interaction
is possible whenever the polyhedron contains at
least one Hamiltonian ecircuit (13); all of the del-
tahedra known in polyhedral borane and carborane
chemistry may be readily shown to contain more than
one Hamiltonian circuit. The unique internal orbi-
tals are directed inward and interact at the centre
of the deltahedron. As a reasonable first approxi-
mation we assume that this interaction at the core
may be represented by the complete graph Kn (i E .

Fnergy Level Patterns

It is known (9) for all Kn graphs that the eig-
envalue specfrum has one positive eigenvalue equal
ton - 1 and that the remairing n - 1 are all nega-
tive and equal to -1. From thils eigenvalue pattern
we may now suppose that the interaction of the unique
internal orbitals at the corec will yield one new
bonding orbital and n - 1 new anti-bonding o-bitals.
Upon summing all the beonding and anti-bending orbi-
tals in a deltahedral specics, we arrive at the foll-
owing table:

Description of Bonding 'lype B.O. BB
Surface: 2n twin internal orbitals n n

Core: n unique internal orbitals 1 n -1
Total: n+1 ’n - 1

Our table reveals clearly that the n bonding orbi-
tals arising {rom the surface beonding and the single
bonding orbital originating from the core interact-
ion together give a total of n + 1 bonding orbitals
for any chemically feasible deltahedron. Upon fill-
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ing these orbltals with electrons, one obtains in all
2n + 2 bonding electrons, a result 1n accord with
guantum chemical calculations (8).

The analogy existing between the two-dimensional
polygonal systems and the three-dimensional polyhe-
dral systems is now apparent. Both may be analysed
using algebraic graph theory, and the only signifi-
cant difference between the two lies in the type of
graph used to represent the interaction of the unique
internal orbitals of the vertex atoms. Whereas for
poly¥gonal species cyclic graphs Cn have to be used,
in the case of deltahedral systems complete graphs
K“ are appropriate. This seemingly minor difference
is responsible for a major difference in the energy
level pattcerns which are produced. DBy a liberal ex-
tension of classical terminolopy and on the basis of
our analysis, we propose that polygonal systems be
recarded as two-dimensional aromatic systems and that
pelyhedral systems be interpreted as three-dimensional
aromatic systems. Tn passing 1t should also be men-
tioned that as the eyclic Cn graphs and the complete
K, graphs are the only types of graph which are repg-
ular for any number of vertices, it follows that no
other bonding topology of the unigue internal orbitals
of a type fundamentally different from those consider-
ed is possible.

Polyhedral Clusters

Tn addition to the deltahedral systems examined
ahove, we may also consider the bonding topclogy in
electron-rich polyhedral clusters, which contain more
than 2n + 2 skeletal elecctrons, and in eleectron-poor
polyhedral clusters, which contain less than 2n + 2
skeletal electrons. The electron-rich systems have
been discussed in the literature, especially in the
case of boron hydride derivatives (14). 1In fact,
there are well-established families of nido and of
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arachno compounds containing respectively 2n + 4

and 2n + 6 skeletal electrons. In contrast to the
deltahedra considered thus far, nido systems will
contain one hcle, i.e. one non-triangular face, and
arachno systems will contain two holes or one large
bent hole. Each successive addition of electron
pairs to a 2n + 2 deltahedron thus results in a
puncture of the deltahedral surface. The process

by which this occurs we shall refer to as polyhedral
puncture. An alternative way of viewing this pro-
cess is to envisage the excision of one or more of
the vertilces along with all of the edges leading
from them; such a process we will deslgnate as poly-
hedral excision.

In applying our analysis to nido systems, 1t is
observed that the vertex atoms of the nido polyhe-
dron may be divided intoc two sets. These are the
border atoms which form the border of a hole and
the interior atoms which form only triangular faces.
In the square pyramid, for instance, the four basal
vertices form the border vertices since they border
on the square hole, whilst the apical vertex is the
only interior vertex. Experimental results (15)
suggest that the external and twin internal orbitals
of the border vertex atoms should be taken to be sp2
hybrids; the unique internal orbitals will thus be
p orbitals. For the interior vertex atoms we shall
associate sp hybrids with the external and unique
internal orbitals, and p orbitals with the twin int-
ernal orbitals. We now suppose that of the total of
n vertices v will be interior vertices for a given
nido structure. There are actually three differing
types of interaction among the internal orbitals,
which generate bonding and anti-bonding orbitals as
indicated in the table overleaf. The results are
also presented pictorially in Figure 2.
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Description of Bonding Type B.O. A.B.O.

2(n - v) border and 2v interior
twin internal orbitals in surface

v unique internal orbitals of
interior atoms at core

n = v unigue internal orbitals of
border atoms over surface of hole

Total n+2? n - 2

The first two types of interaction are the same
as those occurring in deltahedral systems, whereas
the third type can clearly occur only in systems
having at least one hole. 1t is of interest to note
here that the sccond and third interactions always
produce exactly orne new bonding orbital each, irres-
pective of the values assumed by v and n - v (provi-
ded, of course, that they are both greater than onc).
This is because any complete graph Kn can have only
one positive eigenvalue for all n, as pointed out
earlicr. As a direct consequence, it may be seen
that the total number of bonding orbitals for all
nido systems is always n + 2. The number of skele-
tal bonding electrons will accordingly be ?n + 4, in

agreement with experimental observation.

Upon continuing the process of polyhedral puncture,
deltahedral fragments containing two or more holes are
produced. In our analysis the treatment for each new
hole is, however, exactly the same as that described
for the nido structures. 1In fact, every time a new
Fole is formed there will be a new splitting of the
core interaction of the unique internal orbitals into
an interaction across the hole and a core interaction
of the remairing interior atoms. Each new hole will
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thus necessitate the introduction of ane new complete
grarh, which in turn will be resvonsible for the addi-
tion of one new bonding orbital to the cverall energy
level pattern. In other words, each new hole will ef-
feetively contribute two new electrons to the total
number of skelelal electrons. Arachne systems “aving
two holes, for instance, will accordingly have a total
of 2n + £ skeletal electrons. An-actual example of
polyhedral puneture is provided by the addlition of two
eleetrons to the closed icosahedral carborane D_CERloHTD
to give the nido dianion 02810E12?' containing a hexa-
gonal hole (16). Tt is not surprising that the reascnt
for effecting this chemical transformation is sodium
metal in the presence of naphthalene, an excellent

source of electrons.

Anti-bonding

[21]

Fonding

Figure 2. 'The encrgy level pattern for a nido poly-
hedral cluster having n vertices, v of
which are interior vertices.

Capped Deltahedra

The properties of electron-poor polyhedral clusters
containing less than 2n + 2 skeletal electrons have
noet been as thoroughly investigated as those of their
electron-rich counterparts. This is apparently be-
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causze represcntatives of this class of compound are
mueh rarer. To understand these systems we note
first that for deltahedra centaining 7, 8, 10 and

11 vertices two alternative closed deltahedral
structures are possible. In each case one of the
structures is actually found in deltahedral boranes
whilst the cther is not. The unfavored structure

on n vertices may be partitioned inteo a tctrahedron
and a smaller deltahedron having n - 1 vertices,
such that the tetrahedron and the deltahedron have
one face in common. Thus, the bicapped octahedron
on 8 vertices may be partitioned into a tetrahedron
and a capped octahedron on 7 vertices. The latter
may in turn be further partitioned into & tetrahedron
and an octahedron on 6 vertices. Yet further parti-
tioning is, however, not possible. The deltahedra
which can be partitioned may be visualized as having
one ar mere capped triangular faces. Deltahedra for
which capping is not possible contaln no vertices

of degrec three; all of their vertices are of degree

four or higher.

We come now to the structure of the totrahedron
itzelf, which 1s unusual in that 1t has twelve skel-
ctal electrens. 1In deltahedra where the bonding 1s
delocalised we have indicated that there will be a
total of 2n + ? skeletal electrons. In such systems
where the bonding is localised, however, there must
be a total of 2k skeletal electrons, where k 1s the
number of edges, as each edge is now associated with
one electron pair bond. As localised systems have
simple two-electron bonds directed along the edges
whereas delocalised systems have global delocalisa-
tion, it is evident that in general 2k # 2n + 2. 1In
fact, the number of skeletal electrons may be used
a5 an indicator of the type ol bonding vresent in

dcltahedral systems. Decausc the tetrahedron has
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2k, i.e. twelve, skeletal electrons, the bonding in
it must be localised. This conclusion goes a long
way in accounting for the special stability of this
particular structure.

For the deltahedral systems having capped faces
we make the reasonable assumption that the bonding
in the tetrahedral chamber constituting the cap will
be localised. 1In the polyhedral boranes and carbor-
anes the vertex atoms have only four valence orbitals,
one of which is used in the bonding to the external
substituent. This leaves just three orbitals to par-
ticipate in the delocalisation in the deltahedron.
If now one face of the deltahedron is capped, four
orbitals are required from each of the vertex atoms
forming fthe capped face for the cluster bonding:
three for the delocalised bonding in the deltahedron
and one for the localised bond to the car. TIn the
case of boron and carbon atoms not all of the four
bonding orbitals can be so oriented without intro-
ducing ccnsiderable strain into the system. As a
general rule therefore such vertex atoms are not
found at the vertices of capped faces. Certaln cap-
ped deltahedra, such as the bicapped octahedron, for
which the capped structure appcars to be stable, re-
present exceptions to this general rule.

Transition Metal Clusters

Unlike boron and carbon atoms, transition metal
atoms which form elusters have up to nine bonding orb-
itals available, for they can make use of d orbifals
in addition to the s and p orbitals, Transition
metal atoms can thus appear at the vertices of capped
triangular faces in deltahedra. Two examples of cap-
ped transition metal eclusters are the osmium carbonyl
OQ({CO)ls based on a bicapped tptrahpdron (17) and
the rhodium carbonyl anion Rh (tO)I( based on a
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capped octahedron (18). Both of these clusters ex-
hibit considerable bonding flexibility depending
upon whether the vertex metal electron pairs are
involved in the cluster bornding or appear rather

as lone vairs. In summary, 1t is evident that the
analogy existing between transition metal atoms and
bororn: or carbon atoms as vertex atoms in polyhedral
clusfers hreaks down when capped deltahedra are
considered. Such polyhedra require some vertex
atoms which contribute four or more internal orbi-
tals to the skeletal bonding.

Detalled examination of the two cited capped
translition metal clusters reveals that their bonding
may be understood 1f the cap is assumed Lo contri-
bute the same number of electrons to the central
volyhedron as if 1t were a vertex of that polyhe-
dron. However, since the cap participates only I1n
localised bonding and is located above the surflace
oif the central volyhedron, it cannct contribute any
new internal ordifals ton affect the delocalisation
of the central polyhedron. Capping would thus ap-
pear to be a suitable mechanism to contribute clec-
trons to a central polyhedron without contributing
any new bonding orbltals. It thus seccoms fto bhe a
good remedy for electron poverty. 1In Fact, both
056(00)18 and Rh7(co)l63' are electron-poor clus-
Yers contalalng Pn pather tThan P 4 2 sheletal
electrons.  An even sgimpler example of this behav-
iour is provided by the frigonal bipyramld, which
may be considered as a capped tetrahedron. Beth
the fetrabedron i the trigonsl bipyramid regulre
12 skeletal elecirens for stability. This is con-
sistent with the netion that the cap in the trigonal
bipyramid contributes the usual number of skeletal
clectrons but no new baondlng orbitals. The bonding

topolegy in many other more exotie metalloborancs
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and metallocarboranes may be similarly interpreted

by means of the general principles cutlined here (1)}.

Some Organic Cations

The structures adopted by organic cations con-
sisting only of CH groups have been at the centie
of much controvery aver the past decade. Tt came
as a surprise in 1972 when theoretical calculations
predicted a square pyramidal structure for the (CIH)
cation rather than a planar structure. Subsequent
experimental werk confirmed that these caleulations
were correct (19). Tnvestigations on the (CH)69+
dication further demonstrated that a descripticen in
terms of two-electron three-centre bonds would be
inadequate. Preparative work again established that
this species adopts a non-planar, non-classical
structure which is also pyramidal (20). In this
latter instance the bonding tepology involves a
hexa-coordinated carbon atom, a feature normally
encountercd only in the domain of organometallic
chemistry. Tt 1s our opinion that such observations
can be understood in terms of the theory we have
expounded above. Work in this area is al present
underway (7).
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