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TOPOLOSICAL METHODS IN CHEMICAL KINETIES

ON THE APPLICABILITY OF THERMODYNAMICS TO MASS ACTION KINETICS
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SUMMARY

After a short introduction to the necded equilibrium thermodynamics
formulated on dual linear vector spaces, a corresponding approach to
noneguilibriur thermodynamics of a specific class of gradient dyna-
mical systems is developed. Illustrative examples from formal mass
action kinetics ars then discussed to demonstrate the narrowness of
the applicability range of thermodynamics to dynamical systems of
interacting species. The whale treatment is restricted to the well
known qualitative topological methods, used also for mathematical

modeling of chemical and biclogical processes.
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INTRODUCT ION

In the many different approaches to thermadynamics, as far as is known
to the author, the first attempt to use vector analysis in thermodyna-
mics has been made by Kobozev [1], presumably motivated by the ideas of
Bridgman [2]. Some time later Milicevic [3) published an approach to
chemical thermodynamics based on gradient vector fields and scalar pro-
ducts. Developing the nonlinear thermodynamics Glansdorff and Prigugine
[4] and Nicolis [5] used scalar and vector potentials as fundamental con-
cepts for the establishment of the evolution criterion. A formulation of
thermodynamics founded on the properties of the Hilbert space was recent-
ly developed by Weinhold [6]. Although a1l mentioned authors have obvious-
ly done their work independently, many similar ideas can be detected in
all this work. The treatments [3] and [6], inspired by the recognition
of Tisza [7] that in the Gibbs space no physically meaningful metric is

definable, will be used here as the starting point.

After a short introduction to that formalism, in this paper the applica-
tion of thermodynamics to dynamical systems of interacting species in
the sense of Andronov et al. [8, 9] is piven. Selected examples from
mass action kinetics are then treated mostly by topological methods and

their physical meaning is discussed.

The whole approach is oriented to an as simple as possible presentation
of fundamental ideas and therefore no generalisations are made. Closed
and open isothermal isobaric systems only are considered. The appropria-
te thermodynamic energy function is the Gibbs function G*, which has
been uniguely defined by Tisza [10] and Callen [11] as a lLegendre trans-

form of the internal energy of the system.

OUTLINES OF THE BASIC FORMALISM

Using an isothermal isobaric homogeneous three-component system as a
demonstration example the main results from [3] and [6] relevant to the

matter discussed here, will be now gliven.
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The content of the system coan be expressed by moles my of present spe-
cies in the volume. In closed systems it is convenient to replace them
by dimensionless mole fractions %5 and to use the expression:

X, = 1 )
11

[ o

i

Thesz quantities are derived from measurement and can therefore be trea-

ted as real numbers.
Because
Xy >0 (2)

the composition of the system will be given in the approprilate Euclidean

space:
Rr® = {x: Xyr ¥os X5l (3)

by the row vector g in the pasitive orthant. The space norm inducing

metric (x: column vector):
R
lxl = | <&l (4)
follows from the existence of the scalar product <:|->.

The sole necessary assumption to describe the here treated thermedyna-

mice is, that there exists a CZ-scalar function
GIX) = G*/R*T* (5)

(R*: gas constant, T*: femperature} which in the positive orthant of the

considered space has all properties of the dimensionless Gibbs function.

For this purpose consider the neighbourhood N < W of a particular point

zs : W and define on the open set W < RY:
£ = grad G(x) (6)

where G: N>R
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and grad G: N »> Rr?
represents the corresponding conservative force field. In the positive
orthant the vector i can be now uniquely identified as the chemical po-

tential vector.
For the rotation of this gradient vector field
curl g: Rr® » R*

as is well known, results

—

o - 93 .2
% g ax, £

url grad G(x) = .8 o - - = 0 (7)
* £ = ‘ax3 3x1 &2 -

3 9

E ax1 0 £y

raspectively

9z, og
- 3_3 (8)
Xj Xi

The relations (8) express exactly the first law of thermodynamics in terms

of the Gibbs energy function G(x).

Note additicnally, that on an arbitrary nonconservativa vector field,

using the Helmholtz theorem [12], & vector point function h(x) with a

lamelar and a solenoidal part can be defined

hix) = - grad L(x] + curl s{(x) (8)
which implies as well known

curl grad L(x) = 0 , div curl s(x) =0

This very interesting topic is treated in more detail by Glansdorff and
Prigogine [41 and Nicolis [5]. The existence of a vector potential such

as (9) violates however the first law of thermodynomics and will be con-
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sidered only briefly here.

Proceeding further, it follows that the scalar products:

6 = <glx> (1)
0 = <x|dg> (12)
dé = <g|dx> (13)

are very well known thermodynamic expression for g The Gibbs function
of a mixture is given hy (11). The Gibbs-Duhem relation is expressed

with the bilinear form (12). The condition that (13) is an exact diffe-
rential (dG = 0) states the second law of thermodynamics. i.e. that in

equiliorium
£q T By T By 14
must hold.

III.
TERMINOLOGICAL REMARKS

In the following text several planar (: two-component) dynamical systems
of interacting species will be considered. Singularity points X in the
phase plene [8] play thereby a dominante role. The terminology used in
literature for this purpose is partlally very different (c.f. Table I).
To avoid confusion, the terminology used here for singularity points is

defined in Fig. 1.
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Table T: Different terminology for singularity points
This work Ref. [8, 9] Ref. [13] Ref. [14] Ref, [15]
Degenerate Multiple . . -
noda point
Focus Star
Improper Proper or
noda 1mzrnper
no
Node Improper a
node
Node
Node Node LAPHOpET
node
Focus Focus Spiral Spiral Focus
Centre Centre Centre Centre Vortex
Saddle Saddle Saddle Saddle Saddle

Note that, if the planar (linsar or linearized) dynamical system (with
the origin of coordinates transferred in the singularity point) is given

by the autonomous system of ordinary differential equations

< o

=By (15)

(;: dimensionless time derivative), then with the trace (Tr) and deter-
minant (Det) of the Jacobian matrix evaluated at y = 0, the characteri-

stic polynomial for the eigenvalues A is:
A2 - (TrB) A + Det B =10 (18)
The corresponding discriminant is defined as

A=(TrB)?-4a0etp (17)
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Stability diagram for singularity points

Fig. 1:
o
s
=
attraecting < 2111
2 repalling
Tr <0 Tr >0
Det B >0
Improper - —
s nodes

Foci
A<D

Centres

Nodes
A>0
Degenerate
nodes
Det = 0 Saddles Det < 0
unstable
IV.

GRADIENT DYNAMICAL SYSTEMS

The kinetics of particular chemically reacting systems was investigated
by Gavalas [16] using the theory of manifolds. Here only the derived
formulae from section II. will be applied to gradient dynamical systems

such as discussed by Hirsch and Smale [13].

The existence and uniqueness of the solutions for the considered initial
value problems [15] are assumed to b2 given. Because of (2) the trajec-
tories of integral curves have only a physical meaning if they are boun-
ded in the positive orthant of Rz, which now represents the phase plane

[8] of the dynamical systems investigated.
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To establish the applicability of the Gibbs function to such nonequili-
brium systems two points are considered:

1. The validity of the first law of thermodynamics

ii. The existence of G as a Liapunov function [17], which

implies the validity of the second law of thermodyna-
mics.

Taking now the dimensionless time derivative of (13) in appropriately

changed coordinates
Gly) = <gly> (18)

it is cobvious that the two mentioned points will strongly depend on the

properties of the matrix B from (15).

For the particular gradient dynamical system
y = - grad Gly) (19)

where G: M 2 R ist a C?-function, it is easy to prove, that both points

are satisfied.

The corresponding Jacobian matrix for any singularity point x € W of
—_— ——— -8

£18]

8g1 3g1
By1 Byz
B-- (20)
Bgz 332
ay1 8y2

is symmetric, which reflects the validity of the first law of thermodyna-
mics. The eguations (15) represent thereforec the known equations of irre-
versible thermodynamics [181 and the symmelry property of B expresses the

celebrated Unsaper relationship.

From (18) and (19} it follows
Gly) = - |g|? <0 (21)
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i.e. if additionally Gly) > 0 and G(0) = O hold, G will be e Liapunov

function.

The symmetry property of the matrix B leads to the necessary but not
sufficient condition [13], that Gly) can be only a Liaspunov function

when the singularity point is an attracting or a stable degensrate node.

This reasoning is also true for erbitrary defined scalar products and
corresponding gradient fields, e.g. from the Thom catastrophe Theory
[19], where, howaver, the physical meaning of Gly) can be complately

lost.

With the selected examples from mass action kinetics it will be shown,
that insimplest vases often the symretry of B is not given and under the
variety of appropriate Llspunov functions one such as Gly) must not

exlst, as pointed out Firstly by Wei [20].
v

SELECTED TLLUSTRATIVE EXAMPLES

All examples are taken from the classical mass action kineties. No gene-

ralisations e.g. aof Horn and Jacksen [21] or of Ostar and Perelson [22]

are discussed.

fFor thz2 model reaction diagrams the flow graphs of Clarke [23] are used.
The different species are designsted by Xi’ the flows by arrows (the
barbs and featbhers defining the interaction stochiometry), the rate con-

stants by Ki > 0

1. Stable deganerate node

The scheme

K9
X, —= X

i 2
represents the simplest model for a closed system of two interacting
species. Introducing the dimsnsionless time T = k.t and using mole

1
fractions for the mass balance
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X,

2=1-x1 (22)

it follows for the singularity point (x = 0): x, = 0, x,_ = 1. The

corresponding singular matrix

-1 0
B =
10
ylelds: Tr B = - 1, Uet B = 0, A = 1. Therefore the point is a non-

repelling degensrate node. The matrix B is nonsymmetric i.s. the
first law of thermodynamics is viclated and therewlse G(y) as a
Liapunov function is not physically meeningful. Taking, however

2

1 1
Viy) =5y 7 Y2

and making use of (22), it results

v = -y 2 -y ?<
Viy) Yy Y4 0
The degenerate node is in sense of Liapunov attracting. For arbi-
trary initial conditions the composision of the system will be

given by (22) in the phass plane.

Equilibrium point

Consider now

kq
i b T

L)
Proceeding as in the previous example it follows

1 o | .
2s K+ 1"~ ky  Xqg
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The corresponding matrix

is again singular and the system will obey the first law of thermo-

dynamics only if

holds. The equilibrium point is an attracting degenerate node:

6(0) = 0, Gly) >0, Gty) €0

In this case expressions such as "near” and "far" from equili-
brium arc meaningless. When the system is out of equilibrium
the equations (15) and the conditions (18), (18], (20) will be

perpetually satisfied.

3. Stationary point

The system

k
Kq Ky
—_— ==X,
kg

is open and mole fractions can nu morz be used. Introducing how-

ever
ka K4 ks kg
W B g, s, S 5 T KeBs @ = o=y B B
17K 2T R, 2 q K, K,

the dimensionless equations result
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X
n

1 - (a+1) Xt bx2

ax1 = bx2

x
n

For i = 0, the singularity point has the value x = a/b,

1s = 1> %p4

25 a K2
_.._..n.ij.=k—=}(
x1s 3

holds. After transferring the origin of coordinstes in the singula-

rity point it is obvious that only for

a symmetric matrix follows:

-(b+1) b
g-=
b =
From
B =- (2b+1) < 0O
Det B =b >0

A =4b% +1>0

the singularity point caen be identified as an attracting node. All
trajectories will therefore terminate in this sinpularity i.e. all
flows in the phase plane will asymptotically (: T + =) reach this

stationary point.

Although the considered system for K = 1 obeys to the first law

of thermodynamics Gly) is not a Liapunav function for it.

To get an appropriate Liapunov function a similarity trensformation
[24] often used in the theory of oscillations [25] can be used. The
first order system of equations (15) is equivalent to the second

order equation
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Yy - (TrB) y, + (Det B) y, = 0
Introduction of a new variable [;1 = z) leads to

-1 0 1
L BR-
~Det8B TrB

A Liapunov function can be now easily found (for Det B> 0)

) g o Ll
; 2 2 4

i

Viy,.¥q) = Tr By, " = - (20+1) 3,2 < 0

which in their general form holds also for K # 1.

Note that this Liapunov function is nonthermedynamic, because the
phase plane is changed. From a prectical point of view it is inte-
resting to mention, that the behaviour of the two-component system
can, in such a phasg plane, be described in terms of variables of

only one component.

4, Stable closed orbits

The Lotka-Volterra predator-prey model known from numerous publica-

tions

will be now discussed briefly with the method used here.
Introduction of the dimensionless quantities

ko Kz k1
Xy = o m, o X, " Ky my, T=kyt, a-= —;

yizld thz rote equotions
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Xq = aXy T XX,
Ay =7 Xy b XXy
a ] = ' = = =
Two singularity points exist: Xig o, X5 0 and X1g 1, Xy a.

For the first singularity the matrix of the linearized system is

symmetric and has a determinant with negative . The singulari-

ty point is therefore an (unstable) saddle and in its neighbourhood

the system is conservative.

After transferring the origin in the seccnd singularity and lineari-

zing, the matrix of the equations system raads

0 =1
g =
a 0
This metrix is nonsymmetric, and yields Tr i = G, Det B = a,
A = - 4a, Therefore the singularity point is & centre surrounded

by closed orbits in its neighbourhood:

ae'[[x1-1]+[><2‘a]] =

x1x2 const.

Because of the existence of the saddle in =hr origin of the phase

plane these orbits are bounded in the positive orthant of RZ.

The Liapunov function is given by

Viy)

Viy) = - y‘iy2 * L‘p‘z =0

Therefore no flow can reach the cenirz2 i.e. a stable but not attrac-
ting stationary point. The system wili te either in this point

[: state) or osclllate with a constant period.
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5. Limit cycle

For the model system

K1 ko
4)(1 @Xz

K

3

Lefever and Nicolis [26] showed that it can exhibit the behaviour

of a 1limit cycle. Transforming the original rate equations in a se-
cond order equation of Liénard type, the authors proved by a theorem

of Levinson and Smith [27], the existence of an attracting closed

orhit. For the same purpose Poore [28] used the Hopf bifurcation theo-
ry [291. Tyson [30. 311 finally proved that the solutions of the rate
equations are bounded in a certain domain of the positive orthant and

estimated the boundary of the corresponding open set in R2.
Here this model will be discussed from a specific point of view.

Introducing as before

{k. k
3 3
Ky 2 — My, X5 = ot O il
1 kK 1 2) k2 4
4 A
}f‘_a_ .
P k
4 4 4

the dimensionless rate equations follow

k
a =

7]
2

1 a - (b+1) Kot TRy

X
L}

X
n
o
pad
|
X

Note that "a" and "h" do not appear anymore as the constant concen-
trations of species [26], but as the dimensionless products of the

rate constants.

There exists aonly one singularity point: x1S = a, Xog T b/a. Trans-

ferring the origin and linearizing leads to
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(b-1) a?

o
L

which is a nonsymmetric matrix for arbitrary values of their ele-
ments. Note further:

TrB=b-a®-1

Det B = a* >0

A= (b~ a%- 12 - 3a2
Using the same similarity transformation as in example 3, for the

Liapunov function in the changed phase plane follows

. B @
V(y1.y1) 5 Y1 s 5

Viy,.y,1 = (Tr B) v, 2

It is obvious that the singularity point will be for Tr B < O
attracting, for Tr B = 0 stable and for Tr B > 0 repelling. Depen-

ding on the sign of A it will be a node, a focus or a centre.

As is known the repelling focus(Tr B > 0, A < 0) is surrounded by
an attracting closed orbit. The existence of this 1limit cycle can

be proved [28] using Hopf bifurcation theory [29].
For the particular system considered, it is necessary only to add:

when the bifurcation point is given by

then the variations [ac + a) and (b, + B) must satisfy

dTr B (a)

<
& 20 da a=0

and
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dTr B (B)

B>0. —5  |ea’ "

which indeed haold.

This is however not sufficient as a proof that the limit cycle is
boundad in the positive orthant of!Rz. To achieve that, it is ne-
cessary to prove that the scaelar product satisfies always

?&lﬂ? <0 on oW
(n: outward directed normal to the boundary oW of the open set

W cR?) in the positive orthant of R? as has been done in £311.

Note that Dthmer [32], Murray [33] and Hastings and Murray [34]

have analysed also a three-component system with analogous mainly

topological methods.

CONCLUSIONS

i.

ii.

iii.

For a specific class of isothermal-isobaric dynamical gradient sy-
stems the classical thermodynamic Gibbs function can be used as a

physically well defined Liapunov function.

Selected examples from mass action kinetics demonstrate, that the
use of classical thermodynamics for description of dynamical sy-

stems of interacting species is limited to a very narrow ranga.

The gualitative mathematical formalism for treatment of "nonthermo-
dynamic" kinetic systems is very powerful, but the interpretation
of the results still cannaot be given within the frames of an exi-

sting physical theory.
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