Plenary Lecture

A NEW EXAMPLE OF AN UNSTABLE SYSTEM BEING STABILIZED BY RANDOM PARAMETER NOISE

L. Arnold

Forschungsschwerpunkt Dynamische Systeme Universität Bremen

Summary

It is shown that any two-dimensional linear system having real eigenvalues a and b satisfying b O a and a + b O can be made exponentially stable by applying one single real noise source.

The destabilizing impact of random noise in linear and nonlinear technical and physical systems is well-known (see, e.g., Hasminski [3], Kozin [5], Arnold and Wihstutz [1]).

However, for chemical and biological systems it is often argued that parameter noise plays a <u>positive</u> role for the stability behaviour of the system. But examples supporting this argument are still quite rare. Hasminski ([3], p.280) constructed a two-dimensional unstable system which can be stabilized by two independent white noise sources.

In this note, we present a new class of unstable deterministic systems in the plane which can be stabilized by applying just one single real (i.e. non-white) noise source.

Since under general conditions the stability properties of a nonlinear system are the same as those of the corresponding linearized system (Hahn [2], p.319 ff), we restrict ourselves to linear systems.

Furthermore, a stabilizable system must have dimension $n \ge 2$, since for n = 1

$$x_t = (a+u_t)x_t$$
, a real number,

yields

$$x_t = x_o \exp t(a + \frac{1}{t} \int_0^t u_s ds)$$
.

For any zero mean stationary ergodic random process $\boldsymbol{u}_{\text{t}}$ we have

$$\lim_{t\to\infty} \frac{1}{t} \int_{0}^{t} u_s ds = 0 \quad \text{with probability 1,}$$

so that the deterministic stability behavior is being conserved.

Theorem. Given any two-dimensional deterministic unstable linear autonomous system z=Az with two real eigenvalues a,b satisfying b < o < a and a+b < o. Then one can choose a real noise u_t (i.e. a zero mean stationary ergodic random process) and a matrix B so that the trivial solution of the parameter-excited system

$$z = (A + u_+ B) z$$

is exponentially stable with probability 1. More precisely, there exists a constant R satisfying (a+b)/2 < R < 0 such that for any solution z_{+}

 $\lim_{t\to\infty}\frac{1}{t}\log|z|=R \text{ with probability 1.}$

Proof.

 Without restricting the generality we assume for the deterministic system the uncoupled form

$$\dot{z} = \begin{pmatrix} a & o \\ o & b \end{pmatrix} \quad z, \quad b < o < a, \quad a+b < o, \quad (1)$$

which can always be derived by coordinate transformation, while for the perturbed system we take

$$\dot{z} = \begin{pmatrix} a & o \\ o & b \end{pmatrix} + u_t \begin{pmatrix} o & 1 \\ -1 & o \end{pmatrix} z = \begin{pmatrix} a & u_t \\ -u_t & b \end{pmatrix} z.(2)$$

 As real noise in (2) we choose the well-known Ornstein -Uhlenbeck process (so-called coloured noise), i.e. a stationary Gaussian Markov process u_t with spectral density

$$f(\lambda) = \frac{\sigma^2}{2\pi} \frac{1}{\lambda^2 + \sigma^2}$$
, $\sigma^2, \lambda > 0$,

and the Gaussian distribution with mean zero and variance $D^2 = 6^{-2}/2 \, \text{d}$ at any time t.

3. We use the method developed by Wihstutz $\begin{bmatrix} 6 \end{bmatrix}$ (see also Arnold and Wihstutz $\begin{bmatrix} 1 \end{bmatrix}$) for dealing with the stability of (2). After introducing polar coordinates $x = r \cos \varphi$, $y = r \sin \varphi$, we obtain after simple calculations

$$|z_t| = |z_0| \exp \int_0^t Q(\varphi_s) ds,$$
 (3)

where

$$Q(\varphi) = (b-a)\sin^2\varphi + a$$
,

while the angle $\boldsymbol{\psi}$ satisfies the nonlinear differential equation

$$\dot{\varphi}_{t} = \frac{b-a}{2} \sin 2\varphi_{t} - u_{t}. \tag{4}$$

If we had for a certain value of D^2

$$\lim_{t\to\infty} \frac{1}{t} \int_0^t Q(\psi_s) ds = R < 0,$$

the proof would be finished .

4. The main theoretical difficulty is that - unlike in the case of white disturbances - the solution z_t of (2) is not a Markov process anymore. But (u_t, φ_t) is a Markov process with state space $\mathbb{R} \times [0,2\pi)$, where the lines $\Psi = 0$ and $\Psi = 2\pi$ are identified. The pair (u_t, φ_t) is a degenerate two-dimensional diffusion process since there is no diffusion component in Ψ -direction. At the so-called 'switching curves'

$$\frac{b-a}{2} \sin \varphi = u$$

φ changes sign (see Figure 1).

While (u_t, φ_t) is travelling around in the state space, φ_t picks-up 'mass' $\int_0^t Q(\varphi_s) ds$ which completely determines the growth of z_t . We will choose p^2 so that (u_t, φ_t) is pushed into areas where Q is, on the average, negative.

5. By a theorem of Kliemann [4] there exists a unique solution (φ_t^o) of (4) depending only on the noise u_s for $s \leq t$ such that $(u_t, (\varphi_t^o))$ is a stationary ergodic Markov process. If μ is the distribution of (φ_t^o) on $[0,2\pi)$, there is a law of large numbers saying that for any solution (φ_t^o) of (4)

$$\lim_{t\to\infty}\frac{1}{t}\int_{0}^{t}Q(\varphi_{s})ds = \int_{0}^{2\pi}Q(\varphi)\mu(d\varphi) = R$$

with probability 1. Thus (3) yields

$$\lim_{t\to\infty}\frac{1}{t}\log|z_t|=R.$$

We are now investigating the sign of the growth rate R.

6. For 'small' noise, i.e. D^2 small, so that $|u_t| < \frac{a-b}{2}$ with probability close to 1, (u_t, ψ_t) will stay around the attracting branches of the switching curve $u = \frac{b-a}{2} \sin 2\psi$. Since everything is π -periodic, we need to consider only the branch through (o,o). A first approximation of ψ_t is therefore

$$\Psi_t = \frac{1}{2} \arcsin \frac{2u_t}{b-a}$$
.

Using this for the calculation of R we obtain

$$R \approx \frac{a+b}{2} + \frac{1}{\sqrt{2 \pi D^2}} \int \sqrt{\frac{a-b}{2}^2 - u^2} \exp(-\frac{u^2}{2D^2}) du$$

$$\approx a - \varepsilon \frac{a-b}{2} > 0$$

provided ε is small enough which can always be accomplished by taking D^2 small enough. Therefore, for small noise the system (2) is still unstable.

7. Now D² is being increased to a level for which u_t spends a proportion of time close to 1 outside a big interval $|u| \le C$. In other words, for the average behavior of (u_t, φ_t) it does not really matter what happens around the switching curves. Since u_t is most of the time very large, we have

$$\dot{\phi}_{t} \approx - u_{t}$$

i.e. ϕ_{t} is rapidly circling around, changing directions if u_{t} changes sign. This means that the distribution of ϕ_{t} is approximately uniform in $[0,2\pi)$. This entails

$$R \approx \frac{1}{2\pi} \int_{0}^{2\pi} Q(\phi) d\phi = \frac{a+b}{2} < o .$$

We can conclude that there must be a critical noise variance D_0^2 depending on a and b with $R(D_0^2) = 0$, so that we have the situation shown in Figure 2.

FIGURE 2

This work is part of a research project supported by Stiftung Volkswagenwerk.

References

- [1] Arnold,L.; Wihstutz,V.: On the stability and growth of real noise parameter-excited linear systems.

 In: Kölzow, Kallianpur (ed.): Proceedings of the Conference on Measure Theory and Stochastic Analysis, Oberwolfach, July 1977. Springer Lecture Notes in Mathematics. To appear 1979.
- [2] Hahn, W.: Stability of Motion. Berlin-Heidelberg-New York: Springer 1967.
- [3] Hasminski, R.S.: Stability of Systems with Random Parameters. Moscow: Nauka 1969 (in russian).
- [4] Kliemann, W.: Some exact results on stability and growth of linear parameter-excited stochastic systems.

 In: Proceedings of the Workshop on Stochastic Control Theory and Stochastic Differential Systems, Bonn, January 1979. Springer Lecture Notes in Control and Information Sciences. To appear 1979.
- [5] Kozin,F.: Stability of the Linear Stochastic System.
 In: Curtain,R.(ed.): Stability of Stochastic
 Dynamical Systems. Springer Lecture Notes in
 Mathematics 294, 186-229 (1972).
- [6] Wihstutz, V.: Über Stabilität und Wachstum von Lösungen linearer Differentialgleichungen mit stationären zufälligen Parametern. PhD Thesis Bremen 1975.