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Abstract

The matching polynomial is a combinatorial mathematical
structure which was recently discovered in theq;etical che-
mistry within a novel apprecach to aromaticity.:5,6j The main,
presently known properties of the matching polynomials are
exposed.

The relation between the characteristic polynomial of a graph
and matching polynomial is presented. Recurrence relations

for matching polynomials are derived. All matching polynomials
have real zeros. Identities are established between matching
polynomials and certain special functions (Chebyshev, Hermité,
Laguerre polynomials).

There are numerous graphic polynomials, i.e. polynomials
which are associated with graphs. Such are, for example, the
chromatic, the distance, the characteristic polynomial etc.
Every graphic polynomial depends on particular properties of
the graph and, thus, reflects the graph structure.
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The graphic polynomials are useful in graph theory because
they often enable the determination of properties of, and

relations between graphs by means of algebraic methods.

The graphic polynomial which will be studied in the present
paper and which is named "the matching polynomial" was introdu-
ced relatively recently. Hower, within a period of only few
years it was independently discovered by a number of resear-
chers.

In 1971 Hosoya [TW defined the "Z-counting polynomial" as
e

m
Q(G, X) = /_< p(G, k) x* (N
k=0

He used this polynomial for characterizing the topological
nature of structural isomers of saturated hydrocarbons and
their thermodynamic properties. [1,2] The meaning of the quan-
tities p(G, k) will be explained later.

In 1972 Heilmann and Lieb [3J in apaper on the theory of

monomer-dimer systems in statistical physics discussed the
poperties of a polynomial, which was in fact identical with
the later introduced mathing polynomial <« (G, X). Heilmann

and Lieb used no name for their polynomial.

It is an intriguing fact that this important work, although
published in an easily available journal, seems to be not
noticed by other researchers in the same field until fall
1978.

In 1975 the cocept of the "acyclic polynomial" was developed
within a new theory of aromaticity. [4,5] This polynomial has
been defined as
m
x(6, X) = » -1n¥ pre, k) X" (2)
k=0
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The relation between the polynomials (1) and (2} is obvious:

i, 5% = o, B,

Few months later Aihara [6] independently discovered a similar
approach to aromaticity. His "reference polynomial" turned out
to be identical with the previously introduced acyclic poly-
nomial. {The papers [4,5] were submitted for publication in
November 1975 while the paper [6} was received in the journal
in June 1976.)

In 1977 Farrell [7] defined and investigated the"matching
polynomial" of a graph, which again coincides with ®(G, X).

Throughout the present paper we shall accept this latter name
for A(G, X). The reasons for this will become obvious during
the following discussion.

The fact that the matching pclynomial is important in chemistry
is nowadays well established and documented in a number of
papers dealing with the theory of both saturated {1,2,8] and
cojugated [4—6,9—19J hydrocarbons. Recently Aihara applied
matching polynomials for describing the three dimensional
aromaticity of boranes. [20] The fact that matching polynomials
possess also a variety of properties of certain mathematical
significance and intrinsic beauty is less familiar to the
scientists being active in the field of mathematical chemistry.
In the present paper we shall expose the most important known
mathematical propedies of matching polynomials, including a

few new theorems and observation. Further results on this topic
can be found elsewhere.

3,7.21-23)

Let G be a graph with n vertices and m edges. The vertices of
G will be labeled by Vir Vor seeaVo while the edge connecting

the vertices Vi and vy is denoted by S



Definition 1. A subgraph of G possessing 2 kX (k2 1) verticoes
v. and v, . = | .
%1 i, (i=1,...,k} and k edges e, . (i=1,...,k) is

Z4,

H - .
~alled a k-matching in the graph G. The niimber of distinct

r-matchings in G i1s denoted by p(G, k).

Of course, p(G, k) is equal to the number of selections of k
independent edges in G. It is both convenient and consequent to

define p(G, 0) = 1 for all graphs G.

We shallcall p(G, k) the k'th matching number c¢f the graph G
Matching numbers play the central role in the whole theory of
matching pelynomials. Therefore we shall illustrate their cal-
culatinn on the example of the graph Ga, possessing 6 vertices
fn=6) and 7 edges (m=7). The edyges ofr Ga are labeled by

=

T —

Case of k=1. One can select any edge, hence p(Ga, 1) = F.

Case of k=2. Pairs of independent edges in G, are:
(1,3), (1,4),01,5), (2,4), (2,5}, (2,6), (2,7),
(3,5), (3,6),(3,7), (4,6); hence p(Ga, 2) =11

Case of k=3. Triplets of independent edges which can be selec-
ted in Ga are: (1,3,5) and (2,4,6). Therefore
p(G,, 3) = 2.

Case of k2> 4. It is not possible to select four or more inde-
pendent edges in Ga. Thus, p(Ga, 4) = p(Ga, By =
ce. = 0.

The following properties of the matching numbers are immediate
consequences of Definition 1.
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1 p(G, 1) =m

(m + 1)m 1 5

2 p(G, 2) ='"——— - = d + d # com ¥ d )
2 2

where di is the degree of the vertex Yy of G.

3 If n is even, then p(G, n/2) is equal to the number of
one-factors of G.

4° p(G, k) =0 if k > n/2

5°  p(G,k) =0=> p(G, kt1) = 0

6  pG,k) =1=>p(G, k+1) = 0

Recently Schwenk proved [24] that for every graph G a number
K = K(G) can be determined, such that

p(G, 1) < p(G, 2) < ... £ p(G, K) = p(G, K+1) > p(G, K+2) = ...

Definition 2. If G is a graph with n vertices and m edges,
then its matching polynomial is denoted by < (G) or & (G, X)
and is given by eq. (2).

For example, the matching polynomial of Ga reads d\(Ga) =

¥ -7 x% + 11 2% - 2.

The characteristic polynomial ¢ (G,X) of a graph is the
characteristic polynomial of its adjacency matrix. [25] The
following important statement is an explanation why the name

"acyclic" is sometimes attributed to the polynomial (G, X).

A graph is said to be acyclic if it contains no cycles. Hence,

for example, Gb and Gc are acyclic graphs, but Ga is not.
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Theorem 1 The matching polynomial of a graph G coincides with
the characteristic polynomial of G,

« (G, X) = ¢ (6%
if, and only if G is an acyclic graph.

This result is a proper conseguence of Definition 2 and the
well known Sachs theorem. [25 - 27] In fact, Sachs proved f26J
that

m

gﬁ @, X) = Z -0 e, Ky gk

k=0
if, and only if G is acyclic. The same result can be found
alsco in a number of later publications.[ze - 30]

If G is composed of two disjoint components G1 and G2, then

we shall write G = G.l ¥ G2

Theorem 2 o (G + Gy) = «((Gg) olGy)

Proof
One can select a k-matching in G so that j of its edges

belong to G1 and k-j of its edges belong to G2 3201 s e k) s
There are p[G1, 3} p(G2, k-3j) such selections and, of course

k
PG, K) = > p(G, 3) p(Gy, k-3)
j=0



=8
Substitution of this relation back into eq. (2) yields Th.2.

Corollary 2.1. o((G1 + G2 +...+ Gj) = q(G1) u(GZ)....m(Gj)

Let e be an arbitrary edge of G incident to the vertices Vi

and Vs' We define now the subgraphs G-—er v G—vr and G—vr-vs.

s
The subgraph G - €rg is cbtained by deletion of the edge €Lq
from G. The subgraph G - Ve is obtained by deletion of the
vertex v_ from G. Similarly, G-v_-v_ = (G-v_)-v_.

r r g g s

For example,

-e
d “rs Gd Vi Gd VoV

Theorem 3. Let e,s be an arbitrary edge of G. Then the
following recurrence relation holds.

“(G) = =(G-e ) - «(G-v, -v.)
Proof
Among the selections of k-matchings in G there are p(G—ers, k)
selections which do not contain the edge L and there are
p(G-vr—vs, k-1) selections which do contain ersr

Therefore,

P(G, k) = p(G-e ., k) + p(G-v -v_, k-1)

S

which substituted back into eq. (2) yields Th.3.
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Theorems 2 and 3 are rather impertant in practice, when the
actual evaluation of the matching polynomials is required.
[1,2, 4-6]

be incident to the vertex v

Let the edges e dr e

DT ey

1

Corollary 3.1.

d
x(G) = X o((G—v E X ( G-v W ) (3)
3=1
Proof
We apply Th.3 successively to the edges €pr Copr w1 €4,
o = = = A7 -
(G) X (G e1r) (G vy vr)
= OK(G—elr-le) - O&(G-v1—v ) - X (G- VoV } = e
. G(G-e1r—ezl_-.. g d\(G—-v -v )

From Th.2 we have ok(G—e1r—e2r-...—edr) =X « (G—vr) since the

matching polynomial of an isclated vertex is simply X.

In the case of d= 0, i.e. when Vr is an isolated vertex in G,
Cor. 3.1 reads simply &K(G) = X & (G—vr).

If Vs is a vertex of degree one, we set d=1 in Cor. 3.1 and

obtain the following result.

Corollary 3.2. [22] For H being an arbitrary subgraph,

@] | - x|@ |- <]
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Let us partition the edges ejr (which are incident to the
vertex Vr) into two groups: {e1r,...,etr} and {et+1,r""

e "
dr}
An analogous reasoning which led to Cor.3.1 gives

t
A () = A(G-ey ~womey ) = 2 & (G-vi-v)) (4)
j=1
d
o (G) = CA(G—et+1,r—...—edr) - :%: GK(G"Vj'Vr) (5)
j=t+1

Combining egs. (3)-(5) we deduce

Corollary 3.4. [22]

« (G) = O((G—e.lr—...—etr) + o (G=

Ct+1,r - " Car

®(G-eq,=..."eq,)

A specialization of this result is the following

corollary 3.5. [22]
RISERRIPSORE PR R

A spanning subgraph of a agraph G is a subgraph possessing all
the vertices of G.

Note that the subgraphs G-e -e

1r-"'-etr' G_et+1,r_"' v

and G-e s e are obtained by deletion of some ed ges

1r dr
from G, but possess the same verﬁces as G; hence they are

spanning subgraphs of G.

Now, according to Cor. 3.4 we can express the matching
polynomial of G in terms of matching polynomials of its

certain spanning subgraphs. If the application of Cor. 3.4
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is repeated a sufficient number of times, one can express the
matching polynomial of a graph G as a linear combination of

matching polynomials of its acyclic spanning subgraphs Fj.

o(G) = E a. ok (F.)
- J J
J
where aj are non-negative integers. Since the spanning

subgraphs Fj are acyclic, we can apply Th.1. This results in

Theorem 4.
X (G) = Z a. 1
(G) . i ¢ ( ])
J
In graph spectral theory {25} the following identity is known

for the first derivative of the characteristic polynomial of
a graph.

q n
— b, ) = }: gb (G-v_, X) (6)
ax

We show now that an analogous result holds also for matching
polynomials.

Corollary 4.1.

u

n
— &(G, X) = > o (G-v, X)
r=1

Proof From Th. 3 we have

A (G-v,) = ;{ 5 4)(Fj—vr)
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Since the right side of this equation depends solely on charac-

teristic polynomials, we can apply eq. (6). Thus

n

n
A (G-v,) = Z ay 5 c;b Ryl =
=1 r=1

r £]

-~ d d e d
S oa, — cf) (F) = — 2 a. (#(F-) = — A6
; I ax 5 ] J dx

The zeros of &«(G, X) are of certain importance in chemistry.
[4-6, 9—20] They have been calculated (using computer
routines) for a large number of graphs. The following important
result was proved by Heilmann and Lieb[3}, but was long time

not recognized by chemists.

Theorem 5. All the zeros of matching polynomials of all graphs

are real.

The same authors proved two additionaybroperties of the zeros

of the matching polynomials.

Theorem 6. (3] Let X,(G) 2 X,(G)> ... 2 X _(G) be the zeros
of #(G) and X, (G-v) 2 X,{G-v)2 ...z X _,(G-v) the zeros of
o{G-v), where v is an arbitrary vertex of G. Then the zeros of
& (G-v) interlace the zeros of X (G), viz.

X, (6) = X, (6=9) > X,(6) > X, (G=v) ™ ...> X _.(G-v) = X_(G);(T)

2(
Theorem 7. [3] If the graph G possesses a Hamiltonian path
which starts at the vertex v, then the inequalities (7) are

strickt, i.e.

Xy (G) > Xy (G-v) 5 X5 (G) > X, (6-v) > v > X {G-v) > X _(G)
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Corollary 7.1. TIf the graph G possesses a Hamiltonian path
(or, of course, a Hamiltonian cycle), then all the zeros of

& (G) are mutually distinct.

Theorems 5 and 6 were recently proved independently by Godsil
and Gutman. (31,32] One should note that the both available
proofs of the reality of the zeros of the matching polynomials
ﬁ,31,32] are based on mathematical induction. Therefore,
freely spoken, we know that Theorem 5 is true, but not "why"
it holds and which are the graph theoretical "reasons" for

its validity. From a combinatorial point of view, the matching
polynomial is only one among many other possible polynomials
of analogous structure. Bur only ol (G) possesses the distingu-

ished property that all its zeros are real.

Further investigations are, therefore, necessary in order to
elucidate the relations between the combinatorial (i.e. graph
theoretical) nature of o (G) and its algebraic properties.
Some preliminary results along these lines are recently ob-
tained by Schaad et al. [33]

We demonstrate now the properties of the matching polynomials
of some special graphs. In particular, we show how these
polynomials are related to certain special functions of
mathemathical physics.[34J

Let Pn’ Cn and Kn be the path, the cycle and the complete
graph with n vertices. Let Ka i be the bicomplete graph with
r

atb vertices (azb).

Theorem 8. Let 400 and U, be the Chebyshev functions of the
first and second kind; let He and Hn be the twg standard

be the
Laguerre and the generalized Laguerre polynomials, respectively.
pd} Then the following identities hold.

forms of the Hermité& polynomials; let I..n and Ln



oy

*(C,, 2X y= 2 T, (X) (8)

1 - x% (e, 2%) = U, (X) (9)
o (K, X) = He_(X) (1@)
2™ 2a(k , 2%%) = H_(x) (1)
UK, X = (-1 1 () (12)
B, o ) ® ety R B (13)

Proof From Cor. 3.2 it follows that

oU(B= )= X (P, ;) - (P _,)
while from Cor. 3.3 we gain an analogous relation
F = A -
J(Cn) X (Cn_1) d(Cn_z)
These recursion relations are closely similar to those valid
for Chebyshev functions. [34] After making this cbservation it
is not difficult to establish egs. (8) and (9).

Since Kn_ v, = K and R, =N, BN E K for an arbitrary

b n-1 T s n-2
vertex Vi and an arbitrary edge - of K r we deduce from
cor. 3.1,

«(K) = X KK 1) - (n=1) (K

n=1 —2)

which is just the recursion relation for Hermité polynomials
Hen(x * [34] It is then easy to verify egs. (10) and (11).

Egs. (12) and (13) are obtained in an analogous manner.

Th. 8 confirms once again that the acyclic polynomial is a
reasonably chosen mathematical structure. It also indicates

a new and remarkable connection between graph theory and theory
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of special functions.

The above presented relations can be utilized in two different
ways. First, egs. (8-13) enable a new combinatcrial interpre-
tation of wvarious special functions. Second, one can apply
graph theoretical arguments and proof techniques in order to
make the mathematical manipulations with special functions

less complicated.

We shall illustrate this latter possibility by the following

two examples. For an arbitrary vertex v, Cn-v = Pn—1'
Form Cor. 4.1 we deduce then

d
— &(C_, ¥X) = nx{(P__,, X).
ax n n—1

which combined with the identities (8) and (9) results in

1 = X2 d
U X} = — T (X}
B n dx n

The bicomplete graph Ka,a has the properties Ka,a =T Ka,a—l
and K -v_=-v_=K for arbitrary adjacent vertices

a,a & S a-1,a-1
Vi, and Vs Then application of Cor.3.1 gives

Ok(Ka’a) = Xa‘.(Ka’a_1) ™ aouka—‘l,a—ﬂ (14)

which is equivalent to the relation (15) between Laguerre poly-
nomials.

G, = &b s =% (15)
a
From eq. (14) one gains

o((Ka+1, a+‘l) = Xo‘(Ka&‘l, a) = (a+1) o((ka a) =
’

=x [Xoex, ) -axik, ;)] - (arhot(k, )
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and therefrom

2 2

o (K ) K = Ra STy R, ¥ = A (B )

a+1, a+1 1, a-1

which immmediately results in a recurrence relation (16).

2
La+1 = (2a + 1 - X) La - a La—1 (16)
It seems to be not simple to deduce egs (15) and (16) using

standard methods of mathematical analysis.

-X - X - X -

The author hopes that the results exposed in the present

paper justified his belief that the matching polynomial is a
guantity not only important in th eoretical chemistry, but

also relevant from the point of view of pure mathematics. It is
to be expected that further interesting results in this field

will be cobtained in the future.

After this paper has been presented on the Bremen Conference

in summer 1978, a number of additional properties of the
matching polynomial were discovered and/or came to the author's
attention. Also a large number of new papers on the chemical
application of x{(G) were published in the meantime. Therefore

the present paper was completely rewritten in March 1979.
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