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Abstract

We investigate the nature of both the constitutional
and characteristic graphs for cata-condensed cycles
(coronae) and derive a number of rules regarding their
boundaries. We discuss the differing types of angular
relationships which exist for nuclei forming a boundary
and show that certain special expressions are derived

from formulae previously given.



Graphical Representation of Corcnae

In Part I of this series1 we presented a formal graph-
theoretical description of aromatic hydrocarbons, and in
Part II2 we made a special study of all-benzenocid systems.
We complete our analysis in this Part by investigating
systems in which cata-condensation of the benzene rings
results in the formation of cyclic structures. This type
of condensation we have previously referred to as cyclic
cata-condensation or corona—condensation.1 The definitions

1 and 112 will

and symbols previously employed in Parts I
be taken over here without any change in their significance.
Thus, a corona-condensed system will be represented by

either a constitutional graph A:

A= [V,E], (1)
or a characteristic graph C:

C = [U,K]. (2)
The vertices of A represent carbon atoms whilst those
of C represent benzene rings. Some corona-condensed

species in the form of a single, unbranched cycle are

illustrated in Figure 1.
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Figure 1. Some examples of cata-condensed aromatic
hydrocarbons or coronae.
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The characteristic graph C of a corona-condensed
species will contain one or more cycles, whose lengths
X

A ... will be exactly equal to the number

o dge Agy
of condensed benzene rings in each of the cycles. As
pointed out e.arlier,lI for species embeddabkle within a
two-dimensional hexagonally tessellated lattice the

length of each cycle must be at least eight. All lengths
greater than eight are possible, though for ) > 10 there

is more than one way in which the cycle may be formed.

It is characteristic of corona-condensed systems that in
addition to the outer periphery they also possess at

least one inner periphery formed from carbon atoms.

These peripheries we shall term respectively the outer

and inner boundaries of the system. The number of

inner boundaries equals the number of cycles in C.

Further condensation of benzene rings ontc a corona-
condensed species will not change the type of condensation,

provided the number of inner boundaries remains fixed.

For simplicity we restrict ourselves at the outset
to a consideration of those corona-condensed systems
possessing only a single cycle constructed such that
the minimum number of benzene rings used; Figure 1 cont-

ains exclusively examples of such species. Under these
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conditions € is a cycle and the cardinalities of U and

K are given by:

1]
=2

[ U] (3)

and
K| = N, (4)

where N represents the number of condensed benzene rings.
As the vertices of C correspond to the six-membered
cycles of A, two neighbouring vertices of C will
correspond to two six-membered cycles in A having one
edge and its two vertices in common. The cardinalities

of V and E are thus given by

V] = an (5)

|E] = 5N. (6)

The A graph will accordingly possess a total of

independent cycles. Using Table 1 in I1 it is readily
seen that the empirical formula of these systems takes

the form C4NH2N‘
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The Edge and Vertex Subsets

All the carbon-carbon linkages in a corona species
belong either to two adjacent rings or to the inner
or outer boundary of the species. The set E may
accordingly be written as the union of three disjoint

subsets:

[al
n

E W EME, (8)
il o s

where Ei is the set of edges representing carbon-carbon
linkages in the inner boundary, Eo the set representing
those in the outer boundary, and Es the set of shared
carbon-carbon linkages. The cardinality of £ will thus
be given as the sum of the cardinalities of the three

subsets:

As every benzene nucleus in a corona species will have

two shared carbon-carbon linkages, each nucleus will
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contribute to Es a total of %-2 edges. It thus follows
that

|E.| =N, (10)

-

and, from (6) and (9), that
= 4N. (11)

An analogous partition of the set V representing
the carbon atoms would lead to V = Ui v Uo U VS, where
Ui is the set of vertices representing atoms in the inner
boundary, Uo is that for atoms in the outer boundary, and
US is that for atoms belonging to neither of these

boundaries. This partitions is, however, reduced to
u=uiUu (12)

because each carbon atom belongs to one of the two
boundaries and hence Us must be empty. It thus follows
that Ui and VO are disjoint subsets and we may therefore

write

vl = v, | + |V | = an. (13)
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Because both boundaries are cycles, each will necessarily

have as many edges as vertices. Accordingly, we may write

=L (14)

) = 10l = Lys 1E] = [Vo) = L,

1

and therefore

L. + L
(o]

]

4N, (15)

Some Angular Relationships

We come now to a consideration of the angles formed
by adjacent edges of the characteristic graph C of a
corona-condensed species. In Figure 2 are illustrated
the six theoretically possible mutual angles which may
be formed at a given vertex of a characteristic graph
of a benzenoid hydrocarbon. In corona-condensed species
with the minimum number of rings only the types (ii),
(iii), and (iv) may occur, for the remaining types (i),
and (v) imply the presence of sites of peri-condensation
and (vi) does not satisfy the requirement of the minimum
number of rings. A collation of the characteristics of

each of the six types has been drawn up in Table 1.
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(i) (i)

(iii) (iv)

(1=3)

(v) (vi)

Figure 2. Diagrams of the six theoretically possible
arrangements of nuclei around a given nucleus
forming part of the boundary of a corona.



- 106 -

Consider the vertex UjeC, where 1 < j < N. Two edges
of C terminate on this vertex and form a mutual inner
angle which we shall denote as Bj. In the constitutional
graph A the vertex uj corresponds to a six-membered ring
which contributes dj edges to the inner boundary of A.

Evidently a relation of the form
6, =3 (1 +4, (16)
exists between these two quantities, where it should

be stressed that Bj relates to the characteristic graph

C whilst dj relates to the constitutional graph A.

Table 1: Characteristics of the Six Types of Condensation
depicted in Fig. 2.

Type Mutual Inner Number of edges dj
Edge Angle (0) contributed to the
inner boundary of A

(o]

i /3 = 60 0
ii 21/3 = 120° 1
iid 3n/3 = 180° 2
iv 4x/3 = 240° 3
v 5n/3 = 300° 4

vi 6n/3 = 360° 5
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Now the inner boundary in the constitutional graph of
a corona species may be viewed from a purely geometrical
standpoint as an irregular N-gon. The sum of the internal

angles of this N-gon, w, will be given by the expression

B R ——
g Zej = -2 = 3020 (17)
3=1

Using (16) one immediately obtains the result

N
Tty =98 -
1 J

Since the length of the inner boundary, Li' is exactly
equal to the left hand side of this equation, it follows
that

L. = 2N - &6, (19)
and, because of (15), that

L = 2N + 6. (20)

It is evident that the lengths Li and Lo are even.

It may be of interest to note that Li and Lo obey the

relations
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N odd: Li = 0 (mod 4)
L0 = 0 (mod 4)

N even: Li = 2 (mod 4)
LO = 2 (mod 4).

The Empirical Formula

As pointed out earlier, the empirical formula of
any corona species with the minimum number of rings

will be of the general form C It is of interest

antlan:
here to consider how many of the 2N hydrogen atoms will
belong to the inner and outer boundaries of such species.
Now the dj edges belonging to a given peripheral ring will
form a path Wj comprising dj edges from the set € and

dj + 1 vertices from the set V., It may be noted in passing
that 1 < dj < 3 as only arrangements (ii), (iii), and

(iv) shown in Figure 2 can be realized in these corona
species. Two of the vertices of wj will be of degree three
whilst the remaining vertices will be of degree two.

As the number of C-H linkages in any part of the
constitutional graph A is always equal to the number of
vertices of degree two in this part, the number of hydrogen

atoms, lying on the inner boundary, bi' must be equal to



N
bi= Z(dj - 1) = Zdj-N= L1~N, (21)
3=1

Using (19) and b = 2N we now determine the number of

hydrogen atoms on the inner and outer boundaries to be

b, = N-86 (22)

b =N+ 6. (23)

To summarize, the inner boundary is formed from 2N-6é carbon
atoms and has 2N-6 C-C linkages and N-6 C-H linkages. The
outer boundary is constructed from 2N+6 carbon atoms and

has 2N+6 C-C linkages and N+6 C-H linkages.

In Figure 3 is depicted a corona-condensed species
having more than the minimal number of rings and containing
all of the typical arrangements of benzene nuclei shown
in Figure 2 in both its inner and outer boundaries. The
species has the empirical formula C102H44. Using the
results given in Table 1 of I1 and remembering that k = 1,
the cardinalities of the sets forming its constitutional
and characteristic graphs are seen to be |V| = 102,
|E|] =131, |u] = 29, |K| = 43, and t = 14. In Figures
3(b) and 3(c) the inner and outer boundaries of the species

are sketched. The corresponding partial characteristic
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(c)

(b)

(a)

(c) Co of a given corona.

and

1

(a) A and C, (b) C,

Figure 3. The graphs
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graphs Ci and CO also shown contain one cycle each and
extra edges: Ci contains a single edge and CO two such
edges. In Ci the length of the cycle is 16 whilst that
for C_ is 22; moreover C., has |U,| = 17 and C_ has

o i i o
1uo| = 24 edges. In both partial graphs the number of

edges is equal to the number of vertices.

The Boundaries of Coronae

As arrangement (i) makes no edge contribution to
the boundary, only the five remaining arrangements of
benzene nuclei, illustrated in Figure 2, are observed in
the partial graphs Ci and Co (Figure 3). Before applying
the expressions derived above to Ci and Co' 1t 48 Eirst
necessary to consider if this is feasible for arrangements
of the type (v) and (vi). Although the arrangement (v) is
immediately seen to present no problem in this regard,
arrangement (vi) presents the difficulty that the two
adjacent nuclei are superimposed. Thus, the nucleus in
the boundary has to be counted twice as must the edge
connecting the vertex cutside the cycle in the character-
istic graph C. We illustrate below the procedure to be

adopted in this special case.



- 112 -

Figure 4. Illustration of a portion of a boundary
of a corona in the arrangement (vi) of

Figure 2.

In Figure 4 is shown a portion of the boundary of
a corona species having the nuclei 2 and 3 in the arrange-
ment (vi). We shall assume for convenience that the nuclei
1 and 4 are condensed on as illustrated in Figqure 4. In
order to evaluate the summation of the dj for the portion
shown we start from nucleus 1. As the angle (123) is 120°
one has the contribution d2 = 1; in the next step, as
the angle (53&) is 3600, one has d3 = 5; and finally
as the angle (523) is also 1200, we have a further contri-

bution d, = 1. The summation will thus assume the form

N
Edj:dl+1+5+1+d4+ .....
j=
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As a consequence of the presence of arrangement (vi)
in a corona species it thus becomes necessary to re-
place the partial characteristic graphs Ci and Co by the
corresponding shortest closed sequence Wi or WO which
embraces all the vertices representing nuclei in the
boundary. If Zi is the length of the cycle in Ci and Fi
the number of vertices not lying within this cycle,
then the length of the shortest closed sequence, Wi’

will be given by

|wi[ =Ly * 2Fi (24)

and, analogously, the length of wo by

=2 + 2F . (25)

It is to be noted here that it is of no import whether
the vertices not contained in the cycles Ci and CO occur
singly or are incorporated within snake or tree-like

side chains. We may also write the following general

relations
|Ui| E Zi + Fi (26)
lu | =2 +F (27)
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From Figure 3 it may be seen that Fi = 1 and
F, = 2, from which we obtain lw;| =18 and |w_| = 26.
Moreover, equations (19) and (20) enable us to determine
the boundary lengths as Li = 30 and .'.0 = 58. The number

of hydrogen atoms attached at each of these boundaries

is obtained from equations (22) and (23) as bi = 12 and bo

= 32. Using equation (14), we also know that |E,| = [V |=
30 and IEO| = |Voi = 58, from whence it follows, using (9)
and the result |E| = 131, that |ES| = 43, Now, unlike

the corona species with the minimum of benzene rings,
condensed aromatic hydrocarbons in general have carbon
atoms not lying on a boundary. Such atoms will form

the disjoint subset Us C V. As these carbon atoms corres-
pond to sites of peri-condensation (see equation (22) of I‘)

it follows that
vl = vl = |v.| = v | = ¢, (28)

which leads, in the case of the species in Figure 3,

to the result iVS| =t = 14.
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Figure 5, Graph illustrating the shortest closed sequence

for a non-cyclic cata-condensed species.

The same process for determining boundary lengths
may be employed even when all the benzene nuclei of an
aromatic hydrocarbon lie on the boundary, as in the case
of ordinary cata-condensation. The partial characteristic
graph CO then assumes the form of a snake (S8) or tree
(T) graph, and for pure cata-condensation becomes iden-
tical with (. For instance, the characteristic graph
of tetraphene is a snake having four vertices and three
edges. As is clear from Figure 5, the length of the

shortest closed sequence traversing all vertices is
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|W| = 6 here, and so from (20) we obtain the result

L, = 2|W| + 6 = 18. For pure cata-condensation the sub-
sets Us' Ui and Ei are empty. For ES we have the
relation

gl = |K] (29)

which holds for all aromatic hydrocarbons.

Some Rules for Boundary Lengths

As pointed out above, the boundaries of all cata-
condensed aromatic species must be of even length.
This is now seen to be true even for the special case
in which the partial characteristic graph Ci or CO is
replaced by the shortest closed sequence Wi or WO.

In deducing (19) and (20) we made use of the fact
that in a corona-condensed species with the minimum
number of benzene rings we always have 'Cil = iCO| = N.

Both of these equations may be generalized to yield

J.].l = 2\('1{ -6 (30)

and
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Lo = 2|Co| + 6. (31}
In the more general case still when side chains are
present Fi and /or Fo are non zero. As will be seen by
reference to Figure 2 (vi), on average each benzene

ring depicted by a vertex counted in Fi and/or Fo contri-
butes four edges to the boundary. Taking intc account

(24) and (25) we therefore may generalize (30) and (31)

further to

-
]

2w, | -6 (32)

and

-~
1}

2|w0| + 6. (33)

From this it follows immediately that both Li and LO

must be even numbers.

In the case of all-benzenoid corona-condensed sys-
tems2 the removal of edges common to two cycles of length
three leads to the bipartite partial edge graph B CC.
The open vertices of B are always of degree three, i.e.
they represent two-fold branched annelation of the rings.
Thus, empty rings in the boundary of an all-benzenoid

species will have an edge angle of 120° and will have
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an arrangement of type (ii) in our Figure 2. As there is,
however, no limitation on the type of arrangement which
full rings may assume, all the arrangements (i) to (vi)
are possible for these rings. By the removal of seven
edges from the characteristic graph shown in Figure

3(a) we obtain the bipartite partial characteristic
graph shown in Figure 6. The species depicted in Figure
3(a) is thus an all-benzenoid aromatic hydrocarbon and

has the formula C102H44.

Figure 6. The bipartite characteristic graph B of the
corona species illustrated in Figure 3(a).
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We conclude with a general rule for the boundaries
of all-benzenoid aromatic systems. As in the partial
characteristic graph B of an all-benzenoid species the
empty and full vertices alternate, this must also be
the case in the partial characteristic graph Ci and Co'
The cycles in both Ci and CO are thus of even length.
From equations (24) and (25) it then follows that
lwii and 1Wo| must alsc always be even. As a character-
istic of all-benzencid systems, however, equations (19)
and (20) reveal that boundary lengths in such species

must be of the form 4u + 2 (p integral).
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