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Introduction

The plethysm of Schur-functions (S-functions) was defined by
Littlewood in [3]. Since then several papers (see [10], [12] for references)
have appeared on the expansion of the plethysm in terms of S-functions.
Recently there has been renewed interest in the problem since the
appearance of the expository paper by Read [10] describing the application
of S-functions to combinatorial analysis, and of the papers of Smith and
Wybourne et al ([1], [111) on the application of the plethysm to the
theory of complex spectra. A summary of Littlewood's work is well presented in
the book by Wybourne[12].

In this paper we outline methods derived in an earlier paper [7] by one of
us and then we discuss algorithms for a certain set of plethysms.
These algorithms have been used to produce the plethysms hm[hB] ({3} & {m}
in Littlewood's notaiion) for m < 12. The tables give a variety of
combinatorial 'numbers', nctably the number of cubical graphs on 12 or fewer
nedes.
2. Definitions

Corresponding to each partition (A) of an integer n there exists a

(A)

character Xp of the symmetric group Sn for each partition
. 3 J
2
pl=1t22..a™ ofn.
Jp Jo Jy
1L sp = s1 sy SR where s. is the power-sum symmetrie function

r 4 s
zai (the o, are indeterminates) then the S-function {}} is a symmetric

function defined by
) = w0
R . L N

I hr i3 the homogeneous power-sum symmetric function
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Zal 5 u2 -n e an , where the sum is over all rl, r2....,rn such that

r; +r, +...+r =T then it is known that (see, for example [5])

="h h o amh

A} = |n |
Al-s+t

A N =t
hAQ-l hke hA2+1""hA2+n—2
(2.1)
hAn—n+1 E 5 @ ‘hA
n

In particular, the one-part S-function{n} is equal to h (by either
definition) so that hA1 is simply [Al}

(We shall use a convention adopted in [10]: that a Roman letter or
subscripted Greek letter will stand for an integer, and a non-subscripted
Greek letter for a partition).

We shall be concerned with two products of S-functions: the ordinary,
commutative (inner) product, for which there is an effective algorithm (6],
and the plethysm, of which we give one of the several equivalent definitions.

If A and B are polyncomials in the power-sum symmetric functions
512 52,..., Sn then by 'substitution of B into A' we mean the replacing of
each &8s in A by the polynomial obtained from B by multiplying by r the

subscript of each of the s's. For example, if
- 1.2 = ik 2
A= (s1 + 92), B = 3 (Es1 + 53)
then we perform the substitution by replacing
1 2
= +
s. by 3(251 33)

s, by %(232 + 52)

A 1 2,2 o) 2
to give 5{ + 33) + 5—(232 + 56)]
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The result is denoted by A(B].

If we write the S-functions {A)} and {u} in terms of the s,
functions, the 'substitution' {A}[{u}Jis a polynomial in the power-sum
symmetrice functions, and hence can be rewritten as a sum of S-functions. The
equation {A}[{u}l= 5 Dv{u}, where D is the coefficient of {v}, defines the
plethysm. Tn Littlewood's notation, {A}[{u}l= {u} @ [l}.D\J is at least zero,
and if (A) is a partition of m, and {p} a partition of n, D, is non-zero only
if (v) is a partition of mn. For ease of typing we will normally use N({v}¥
instead of D . Thus the coefficient of v in hm[hn] is N({v} * hﬁi[hn]], and
also

N({v} *{2})

n
[

i (v) = (})
= 0 otherwise,
(v) and (A) being both partitions of n.
We shall be concerned here with the plethysm {m} [{n}l= hm[hn], i.e.
the case in which {1} and {p} are both one-part S-functions.

3. The Plethysm {3} 8 {m}

In [7] we derived a recursive formula for DA{S} % {m}, where
{1} = [11, 12,...,Xm} is an S-function with Al > m. In order to show how
we apply the formula, and how we find the coefficients of those S5-functions
not covered by the restriction ll > m, we first state the following theorem

(Read [9) ) without proof.

Theorem 1. The number of non-isomorphic bipartite graphs with m
unlabelled nodes in a subset Al of the nodes, and nodes of valency
G — i i
Al’ poree» A, in the other subset A, is
A - * h [h H
N(( 1)(A2) (Am) n[ n])

Now let Gp{l} hm[h“] denote the operator



- 54 =

= = & = * i
Y N([A1 05 A2 Py A3 pa..Am pm} hm—r[hn]) where the summation
is over all permutationsof Pos PyseeesPps and (p) (pj, pz,...,pm) is
a partition of nr. Thus, if {A} = {4, 4, 1 } then
Gg’l{x} h3[h3] = H({e, 3, 1} + {2, 4, o}* n,[n.1)
In applying this operator we shall often need the following properties

of S-functions

a) D Apaeees As Ap s AT = =00, le"'"Ai+1'l’xi—1+1""'lﬂ
Thus {2, 4, 0 } = -{3, 3, 0}
and {2, 3, 1 } = -{2, 3, 1} (whence {2, 3, 1} vanishes identically).

b) If the last non-zero part of {A} is negative, {A} is identically
Zero.
Theorem 2. ir Al > m then
N({A,, A
{ 3

PYRRRETSN hm[h3])

2 2 3
1703850 = Cp g + 630, 4 * 64— oo Ta(h,]

= [G3 + 62,
This is proved in [7]. We wili give a brief cutline of the proof here,
since similar ideas will be used in deriving the other two theorems which we
need. First, as an example of the use of this theorem
N({b,b, 1}* h3[h3] = N({sk - 3, L, 1}* h2[h3])
+N({b -2, 0 -1,2}+{bh-2, 4, 1-1} h2[h3]

- ({4 -5, 4 -1,1}+ {4 -5,4 1-11} h1[h3]

- N({h -k, b -1,1 - 1}* b, [h,]

+ N((b -7, b -1,1- 1} hO[h3]
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N({1, U, 1} + {2, 3, 1} + {2, W}* h?[h3])
- M({-1, 3, 1} + {2, 4} + {0, 3}* n,[n)))

- N({-3 3} + {-2, 3, 0, -1} * h0[h3])

n

N3, 2, 1} - {3, 3} b, b, * hg[h3]) - N(-{3} +{ 2, 1}* hl[h3])
(applying properties (a) and (b)).
= 1.
(It is only necessary to go as far as ho[h3] = {0}).
Consider a bipartite graph with the nodes in two subsets: A consisting
of m unlabelled nodes each of valency 3 and B consisting of nodes with
by

valencies )\ eves A with A, > m.
m 1

i 2?

Since Al > m, the node with this valency cannot be connected to nodes

in Al by single edges only, and hence every bipartite graph of the above
description contains one or both of the features in figure 1.
Figure 1.
Removing feature (a) in figure 1 gives a bipartite graph withm - 1

unlabelled nodes in A A in A_, so that there

Fywmoy Aoy >

is an obvicus 1 - 1 correspondence between ihese new graphs and those of the original

10 and nodes of valency Al -3, A

type which contained feature (a).
By theorem 1, the original ones are counted by
’ *
N({Rl} {Az},.--, {Am} hm[hsl) and these new ones by
- %
Ny = 3R b IR The D
Simarly removal of feature (b) gives the count
RO -2 0y - 1) gl )+ 0y - 28 0,005 1) O
cor g =2 Oy, Q-1 e D).
Application of the principle of inclusion and exclusion to features
(a) and (b) gives a result similar to theorem (2), with
i *
N({Xllflz},..., {Am}* hm[h3]) instead of N({Al, A2,..., Am] hm[hB])’ and

this final step is completed by noting that the result holds for each term
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Figure 1

Figure 2

Q, a;

(b)

P
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in the expansion of the determinant (2.1).

The algorithm suggested by theorem 2 is very easy to program. Its
disadvantage is that it is recursive. It is not possible to obtain a
non-recursive algorithm from the theorem as it stands because it is not
always true that intermediate S-functions generated by the 'G' operators
obey the restriction of the theorem.

In case 7\1 < m it is no longer true that the only 'features' which can nccur
are (a) and (b) of figure 1. It is now possible for }\1 to be connected by single
edges only to the nodes in Al, and the two possibilities are shown as (e¢) and (d)
in figure 2.

Figure 2.

These can be treated in the same manner as features (a) and (b) in
theorem (2) and they give rise to terms Gl,e{)\} hm[h3] and
Gl,l,l(l}hm[h3].

A straightforward application of inclusion-exclusion gives a general
formula, but the number of terms involved is much larger, and the simplicity
of the algorithm is destroyed.

L. Correction for)& <m.

In [7] we also obtained the following.
Theorem L

N, 1m0 = T

b !‘!({)\1 -m+rHul* h [h _7)
T H

0 m-r- n-1

N({v/u}* hr[hn])

where {v/u} is the isobaric determinant lh ([51, page 109).

\)5 —ut—s+t
Again we consider the same bipartite graph, and suppose that the node

of valency Xl is connected to m - r unlabelled nodes in A. We can
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split the graph into two parts. One part G1 is a bipartite graph with a set Al

of m - r unlabelled nodes each of valency 3 {(n in the general case) and a set 31

of nodes of valency Al' Az - Py A3 - 03,..., km = B The other part G2 is a
bipartite graph with a set A2 of r unlabelled nodes of wvalency 3 and nodes of
valency 02’ g,...,pm, where 02 +p3,..., + pm = 3r.

If we remove one edge from each member of A, we can forma 1 -1
s
correspondence between the first subgraph G1 and a bipartite graph 03 with m -r

unlabelled nodes each of valency n - 1 (2 in our case). The new set B1

pree s Am -pm.

contains nodes of valency Al-m = ry AZ- 0

The rest of the work in theorem U consists in enumerating G3 and G?
together.

We are now concerned with the special case in which the original bipartite
graph has no multiple edges. Tt can be shown that in this case the number turns
out to be

m- A
z (-1)* DMy D Dl D) (4.1)
where fa} = 00,0 Agpeens AJHIDY .
2 ™3 mn

Now it is known that N({A}* h [n,]) =1 if (1) {is a partition of

2m into even parts, znd is zero otherwise [10].

Hence k.1 reduces to

m-}\l
p (-1 1 N({e/zu}* b ho1)
=0 (21) n-1, k(3] (h.2)
m—Al
= ¢ (-1)* £ N({a}®zu} n [n 1
%50 (1) m—kl—k 3

where (2M) denotes a partition of 2()‘1 + k) into even parts only.

Since (4.2) corresponds to the cases in which the node of valency Xl
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has no multiple edges, the expression gives us a correction term when we
apply theorem 2 in the case ll < m. Our strategy is thus to calculate this
term as a correction to be added to the algorithm based on theorem 2.

Now from [5], pg. 109

/o) = 20 02 * fu)} D] {a}

o Lhk /(15 ) = @ K @)1 ol
o

If we apply the well-known algorithm for the ordinary product (see [6])
it is easy to see that the coefficient of {0} is 1 or 0. The product
{lk} {a} is formed by adding in order, reading from right to left and top
to bottom, k different new symbols to the Young diagram for {v} . Hence
we must be able to form the Young diagram for {o} by substracting the new
symbols from the diagram for {v}. Hence we select k of the v, and
substract 1 from each of them. This gives an {a} (with coefficient 1),
unless vi < Ui+1’ in which case we reject this selection of k of the
vi and go on to the next.
For example, {(L4, 4, 2, 1)/(1, 1)} = {4, 3, 1, 1} + {4, 3, 2} + {4, L, 1}.
Having obtained these 'target' functions {a}, for each one we find
next N({E] *{EU} hmyk e [hB])' This, of course, requires an algorithm for
S-function multiplicatiin. Such an algorithm is described in [6], and we
have used a somewhat improved version in the present application.
When m - A -k =0, hm_xl_k[hB] is the single S-function {0}, and
the contribution to the correction term is simplified.
We seek N({a}*{2p}{ 0}) = N{{a}*{2u}) =1 or 0 according as a = 24
or not.
Hence in this case the term is 1 or O according as (&) consists

of even parts only, or not.
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In the special case in which A1= m, the only value of k which can be used

)

is k = 0, and hence the whole correction term is 1 if A ,13, kh,..., -

2
are all even, and is zero otherwise.

This second algorithm does, of course, take more time than the first,
and much depends on the speed with which we can do two things: generate
partitions and multiply S-functions. TFortunately algorithms for both of
these are quite fast. In addition this correction term applies only to
those S-functions with Al < m, and we have to use S-function tables only
as far as m - Xl - k. Also when k 1is small, so that m - Al is large,
Al +k is small so that the number of partitions {2p} is small, and
the number of functicns {a} is small.

5. Algorithms.

We can now describe the complete process for the plethysm {3} & {m}.
As we have seen, the S=functions which occur in the expansion correspond to
partitions of 3m into at most m parts. Hence we produce one of these
partitions at a time, and apply the algorithm to the partition.

If m is less than A_, then we need only the algorithm from theorem

17
2. Applying the operation GBGs,l’ for example, means substracting from

As Ays Agsennsdeach of (5,1, 1, 0,..0, 0), (5, 1, 0, 1,...,0),

(55 L O 0. dwmly €55 1 W, 50 Ads 155 05 1 T Bnze (85 O Dsnessds 2
There are Em-l - 1 of these 'vectors', and one can either create and

store them once at the beginning, or generate them on demand. In either

case if the last '"1'" in one of these vectors is in position k, then the

result of operating on (Al, 12,...

since the last non-zero part of the result is negative. Thus it is useful to

s Aj' O 03 O}t 45028 JE€ K,

include the 'length' k of each function.

We can summarize as follows.
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w
=
(o

ep 1. Generate a partition of 3m into a most m parts.

Step 2. Subtract, corresponding to the operator G =0 or 1,

r.s
362,1, r
the vector (3r + 2s, 1, 0, 1,...) (with s 1's). Associated

)r+s+1

with the vector is a sign (-1 Call the result

G0 = (uys wlhseeen ).

Step 3. If the last non-zero part of (u)' is negative, or if, for any
18 pi +1= pi+1 , count zero. Otherwise reduce {p} ' to standard
form  {p} = By Hyseees um} » With 1 >y, > ...>q by applying
property (a) section 3, as many times as necessary, noting the
accompanying sign changes.

Step k.  Search the expansion h [h3] for {u} . Count its coefficient
multiplied by the sign obtained in Step 3.

Go to step 2 for another operator. If there are no more, store
this partition, if its total count is non-zero, together with its
coefficient (the count). Co to step 1 for the next partition.

We do not yet know how to estimate beforehand the amount of storage

space required for each expansion. An upper bound can obviously be calculated

from the number of partitions of 3m into at most m parts (which can be found

from tables of partitions), multiplied by the 'average' length of a partition,
but the result is unsatisfactorily large, since many partitions do not occur:

i.e. occur with zero coefficient.

Now in case Al < m, we have to add the correction term (L.2). We
summarize:
Initially set k = 0, (V) = (A, )«3,..., A

Step 1. Aubtract 1 from each of k elements of (v) to give

(o) = (al, o um_l), with @ > @ ..., > o . TIf the

inequalities do not hold make another selection of k elements.

Step 2. Find a partition of Al + k into at most m- 1 parts. Multiply
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each part by 2, and denote the result by (2u).

Step 3. Find the coefficient of {a}in {2u} b

oo l'k[h3 1: for each

S-function {B} in [h3], find the number of times f{a}

P -k
occurs in {2u}{B} , and multiply the result by the coefficient
of {B} in hm-hl—k [h,%] i

Step L. Go to Step 2 and choose another partition. If there are no more
partitions add to a counter (—1)k iimes the sum of the results
of Step 3.

Increment k and go Lo Step 1.

Step 5. Finish when m - Al - k is negative: i.e. when k > m = 11.
The total is the correction term to be added to the results of
the first algorithm.

6. Conclusion.

The complete procedure, even with the slower correction term, is quite
effective. Both algorithms can, of course, be easily generalized. For the
first algorithm we have

Theorem 2B: If Al > (n-2)m then

M nied)=(c +¢ G G + e
m n n

n-1,1 ~ 'n n-1,1 n-1,1 *een) hm[hn]'

Applying this presents no more diffieulty than applying theorem 2.

The second algorithm does not follow through as easily. One reason is,
of course, that the cases to be enumerated are not simply those in which the
node of valency 11 is connected by single edges. 1In the case n=bh,
for example, theorem 2B omits those cases in which this node is connected by
2 edges or by single edges.

Secondly, the plethysm hmfh2] is especially simple, and the ease of

calculating it (partitions into even parts)does not carry over to



hm[h3] or higher plethysms.

Checking tables produced by these algorithms is not a particularly
easy task. In practice the fact that the algorithm is recursive helps:
since the coefficients in each expansion are never negative, the lack of
negative signs in the higher values is in itself a source of confidence. (In
fact, negative signs appear in the early 'debugging' stages).

A number of other theorems have been used. We will merely quote these, with
references, not necessarily in their original general forms, but in the special
cases which we have used.

1) If A > 0,
m

NCOB* n [0 D) = MO = 1, 4, = Loeewsdy - 1% (17} (0,0)

([2], theorem 28)
and since (by [5]), the coefficient of an S-funetion in {lﬂﬁ[h?] is
1 or O according as its Frobenius 10 form is one of the types

sty

= ete., this is easy to check.

g4 1y "Bl

o P 0
2) For appropriate functions, let {2n - X} denote

l?n - Am , 2n - Am-l”"’ 2n - Al} {(In our case, n = 3).

Then N({2n - X}* hm[hnj) = N({\}* hm[hn]) (r2], theorem 33).
3) If A, <n -1 then

N({A}* 1 (8 3} = M({X) = 3, Apseeead J* 1[0 T)

([2], Theorem 29).
B o1e A > (- - 1)

N({A}* hm[hn]) = N({Al -my Ay, Am}* hm[hnli

# 8 - Ao, AP * R J[h 1)

- N({Al S T PUD SPRREA Xm}* By [hn_l]) (see [71)
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In addition tables have been compiled for m S; 6 by Tbrahim [3]
(Royal Society depository of unpublished tables) and these provide an excellent
check.
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