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Abstract

The mean entropy of the distribution of elements of fi-
nite point groups of symmetry into classes, irreducible repre-
sentations and multiplication table is studied and its proper-
ties formulated in a number of theorems, It is shown that the
mean entropy is the same in the isomorphic groups, and, in the
case of the direct product of two groups, it is an additive
quantity, equal to the sum of the mean entropies of the two
groups. A semiadditivity was also found for the group-subgroup
relation.

1. Introduction

The group theory is of great importance for chemistrylﬂs.

Contrary to the classical quantitative mathematical methods
it describes first of all the different quality of the chemi-
cal systems and represents an essential new stage in the ma-
thematisation of chemistry. The symmetry of atoms, molecules,
and crystals, reflected in the corresponding groups of sym-
metry determines to a grwat extent their properties and be-
haviour, and plays an important role in the quantum mechani-
cal description of these systems,

721

Infermation Theory also reveals new properties of the

material systems. Any system having a determined structure
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carries in itself a corresponding amount of structural infor-
mation. The interactions which change a certain structure,
change its information content as well, 1In this regard it be-
comes more and more evident that systems and processes have
also an information side, independent of their concrete mate-
rial essence, Thus, the energetic and the substantial descrip-
tions turn out to be insufficient.

On this basis, any attempts to combine Group Theory and
Information Theory, as well as attempts at statistical ana-
lysis of the symmetry of various systems will be of interest.
Only a small number of such works treating the automorphic
groups of molecular graphslzﬁlu and the point groups of sym-
metryl5 have been reported up to now, The information content
of molecules is defined in them, denoted as topological in-
formation and information for symmetry, respectively. The ba-
sic approach in these works is the partitioning of the set of
atoms in the molecule into subsets of equivalent atoms. Those
atoms are considered equivalent which interchange their places
when the operations of the group, to which the molecule be-
longs, are carried out.

A different approach is possible in principle, i.e., for
the statistical properties of the groups themselves to be
analyzed and for it to be seen how these properties arc ref-
lected in the concrete systems, belonging to a certain group.
Any group has an inner structure characterized by a definite
amount of entropy. For example, the group may be considered
as a definite structure composed of classes of elements, of
irreducible representations, of subgroups, etc. In addition
any irreducible representation can be considered as a defi-
nite structure of characters, etc. In the present werk the
main results of information theoretic investigations of point
groups of symmetry are presented, in which statistical cha-
racteristics of the groups are defined, and their properties

and changes upon some operations on the groups are studied.

2., Information Theoretic Approach to the Analysis of

the Finite Point Groups

In 1948 C.Shannon suggested his formula
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K
H(P) = - E p;-log, py (1)

for the entropy of the probability distribution P = (pl’pZ’
...,pk) of a random variable X, having k different values
[xl,xz,...xk).

The equation of Shannon can also be used for characte-
rizing different structures. A finite probability scheme can
be constructed for a structure having N elements distributed

into k different substructures :

N N N

ll 2!“'! k

plf p2""? pk

where E:Ni =N, and p, = Ni/N is a probability of a randomly
chosen element to be in the i-th group. The entropy of the
probability distribution, determined according to eqn.(1),
will be an important statistical characteristic of the
structure under consideration¥,

H(P) has & maximum when the probability Py of a certain

element being in each of the k-~substructures is the same:
H(P) = log, k = max (k = const) (2)

Since in such a case the events occur with an equal pro-
bability, their occurence provides no information. The func-
tion reaches its absolute maximum when the number of groups
k is equal to the number of structural elements N, since the
uncertainty increases if the number of events does so. Con-
versly, H(P) = 0 when all the elements belong to one group
only. In that case the probability of a randomly chosen ele-
ment being in this group is p; = 1, and the maximum informa-

tion on this event is available.

* Taking as a measure of structural information its en-

tro Shannon’s function is often called "information con-
PY»

tent“12’13, or "structural information content“lh, or "mean
information content" (15 and other publications of the authors

of the present paper) of the structures. Additional justifi-

cation of this terminology can be found in 16,17 et al.



In this paper any finite point group of order h is consi-
dered as a set composed of h elements. Different decomposi-
tions of this set into k-subsets, having Nl,NZ,...,Nk e¢lements
respectively, are taken into account, Then, the ratio Ni/h =
= pi defines the probability Py of an arbitrary chosen ele-
ment of the group being in the i-th subset. Making use of
Shannon’s equation, the entropy of probability distribution
in the diverse group decompositions is specified and its pro-
perties studied.

Symmetry elements which can be derived from one another
by some transformation of the coordinates, consisting of sym-
metry elements of the same system, form a class. Dealing with
the decomposition of the elements of a certain group into k-
classes, each one of Ni elements, the mean entropy of proba-
bility distribution can be determined, in bits per element,
by egn.(1). Denoting this statistical characteristic of the
one obtains:

Cl L
H, = - g;; Ni/h.lo_g2 Ni/h (3)

group by Hgl

Another decomposition of h into subsets can be carried
out on the basis of the important theorem of the group theory,
according to which the order of the group is a sum of the
squares of the dimensjions of all of its irreducible represen-
tations (IR) :

h =17 + 15 + ... + 1 (4)

Dealing with the h-dimensional space of the group as
composed of k-subspaces, each of them having a dimension 1?,
a mean entropy of the probability distribution over the irre-
ducible representations of the group HéR can be defined. In
this case Py of eqn.(l) will be the probability of an arbit-
rarily chosen irreducible representation having a dimension

li t

k
IR 2 2
HW = - E=i li/h.logz li/h (5)
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The multiplication table of the group is a square matrix
composed of h x h symmetry elements. Each symmetry element ap-
pears once in every row or column of the table. The set of hz
elements can be partitioned into h subsets each of which hav-
ing h identical elements. Specifying the probability of a
randomly chosen symmetry element being in the i-th group of
identical elements; Py = h/h2 = 1/h, the mean entropy of mat-
rix elements distribution in the multiplication table of the
group can be defined in bits per element :

MT

HG = log2 h (6)

/
Another entropy measure, H

gT, dealing with the multipli-
cation table can be introduced as a structure composed of h

rows (or columns). Since there are no two identical rows (or
columns) in the table, the set of h elements is decomposed to
h subsets of one element. In addition, each row or column in
the multiplication table represents a set of h distinct mat-

rix elements. The mean entropy of probability distribution of

the matrix elements into a certain row or column, Hgov or
Hgo]umn, respectively, may also be specified by the Shannon's

equation. Since the probability of an arbitrarily chosen mat-
rix element being in one of the row (or column) subsets, Py =
= 1/h, is the same as that of one row (or column) being in one
of the subsets of the multiplication table, and taking into
account eqn.(6), one obtains :

MT MT/ row

H = H = HG

column
G = log, h (7)

= H
Finally, a decomposition of the h2 elements of the mul-
tiplication table can be carried out according to their sym-
metry in relation to the main diagonal of the table. The mat-
rix elements set divides into subsets of two and one elements
only. Let have m pairs of identical elements symmetrically
placed on both sides of the main diagonal. Each one of the
others h2 - 2m elements will form an individual subset. Here
are included h diagonal elements, and the rest (h2 -h-2m) /2
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pairs of different non-diagonal elements. Taking the probabi-
lities of these two kinds of subsets p, = 2/h, and p, = 1/h2,

respectively, the mean entropy of this probability distribu-

tion, ng'n can be specified :
HetP o o m.2/h2.10g2 B~ - (h2-2m).1/h2.1og2 TS -

= log, i 2m/h2 (8)

More details concerning the statistical characteristics
of the finite point groups of symmetry, introduced here on
the basis of Information Theory, as well as equations charac-
terizing each of the groups important to chemistry, will be
published elsewhere. In this paper we centre our attention
to the statistical properties of the finite point groups,

specifying them in a number of theorems.

. Theorems Concerning the Entro Characteristics of
Finite Point Groups

THEOREM 1. The isomorphic groups have the same mean
entropy t

G (9)

This theorem holds for the mean entropy of any kind of
distribution of the symmetry elements in the group (into:
classes, irreducible representations, subgroups, multiplica-
tion table, etc.). All these substructures of two isomorphic
groups are identical since such groups belong to one and the
same abstract group. Then, due to the same elements distribu-
tion, the probabilities in eqn,(1) will be the same and the
two isomorphic groups will have the same mean entropy.

A theorem opposite to Theorem 1 does not hold. Two non-
isomorphic groups may have the same mean entropy, especially
when the order of the groups is small.

When one deals with the distribution of symmetry elements
into the multiplication table of the group, the entropy equa-
lity extends to nonisomorphic groups as well :



THLORLM 2. The groups of equal order have the same mean
entropy of the symmetry elements distribution into the multi-

plication table of the group and its rows and columns :
if h, = h = h = Jie=h. 3

H, =H = H = ... =H (10)

Here HG is each one of the mcan entropies introduced by

i
eqns.(6,7) for the group having an order h;. The proof of (10)

follows immediately from eqns.(6,7), in which H_, guantities are

G
expressed as a funection of the order h only.
THEOREM 3. For a given order h the abelian groups have

a maximum mean entropy of probability distributions on the
classes of symmetry elements, as well as on the irreducible
representations of the group, which is always greater than the

corresponding mean entropies of the nonabelian groups.

C1(1R)

yC1(IR)
(NUNAHELIAN) (11)

G (ABEL1AN) = 108 B = max >Hg
Proof. Each element in the abelian groups forms a separate
class, Since the number of the irreducible representations of
the group is equal to the number of its classes of symmetry
elements, all the irreducible representations in the abelian
groups are one-dimensional. Then, in eqn.(j) N =1, and in eqn.
(5) l =1, Thus, one obtains for both equatlons to equal the
maximum mean entropy H

max
class having more than one element (Ni > 1), as well as at

= 1032 h. There is at least one

least one irreducible representation of a dimension higher
than 1 (1i :>1) in the nonabelian groups. Then in that case

the mean entropy is not maximum and the theorem is proved.

THEOREM 4. Among two groups of equal order, that group
in which the classes of elements are more in number and with a
smaller number of elements in them, has a higher mean entropy
of probability distribution over the classes of symmetry ele-

ments:



HS“”;—HS”*‘) (h=const, r>k) (12)

Here the number of classes in the two groups is denoted
by r and k, respectively.

Proof. Let denote the number of elements in the classes
of the first and second group by N',Né,...,N;,

and Ni,Nj,...,
N;, respectively. Using eqn.(4), after some simple transforma-

tions one obtains :

c1 _ . Cl(r) cq(k)
AHG = HZ - HGl

k< T
- N'/n.log, N/h - 5 ' N'/h.log, Ni/h =
i 2 i 2
i=1 i=1
= 1/n Eku ¥ N ‘z'r' N .1 N (13)
b 397085 N5, T £ g 808 Ny 3
i=1 i=]
There are always some N; = N; , including here the case

i=1, N; = N; = 1, dealing with the identity elements of the
two groups. By definition the first group has not only a
larger number of classes, but also a smaller number of ele-
ments in them. The elements of the two groups can be ordered
so that

1

N, > Ny (for i=1,2,3,... ,ker)

An additional condition can be taken here that there is

at least one N/ which is a sum of two or several N s
i i

N: = z:Ni . (This is always true for the point groups of
small and moderate order which are of importance to chemist-
ry. It is not known, however, if this equality holds always.).
Given the above, and since

(x + y + 2z + ...).log2 (x +y+2+ ...) > x.log, X +
+ y.logz y + z.logz T * ..

we obtain

Cl “ u / [
AHG = 1/n(EN].l0g, )N, - TIN;.log, Nj) >0 ,



proving the inequality (12).

THEOREM 5. Among two groups of equal order, that group
in which the irreducible representations are more in number
and with a smaller dimension, has a larger mean entropy of
probability distribution over the IR

H(I;R(r) = H(I;R(k) (h=const, r=>k) (14)

Here the number of irreducible representations of the
two groups is denoted by r and k, respectively.

Assigning the dimensions of the first and second group
by N],NopeeeyN,
ugse of the decomposition of the group order h into a sum of

and Ni,N;,...,NE, respectively, and making

the squares of the dimensions of IR (egn.4) one obtains

k<r r
piR(r) IRk 1i/nfy  N2.10g, N2 - w2, 10g N'2J
G G — g 2 Ny i 2 4
i=1 i1 (15)

Similarly to theorem 4, the inequality (14) proves under
the restricted condition that at least one N;Z is equal to
the sum of two or several Nfz H an = Z:N'z.

i i i

THEOREM 6. Let the integer h be partitioned into a sum
of the integers Ni' There are always finite point groups with
an order h which have the maximum meen entropy of probability
distribution on the classes of N, elements in the group.
There are no groups having the minimum mean entropy.

Proof. For each finite h some abelian groups exist (Cn,

Sn. etc.) containing h classes of one element. According to
the theorem 3 they have a maximum mean entropy Hgl = log2 h.

These groups in which all the elements are in one class will

contain a minimum mean entropy. N1 = h in them, the probabi-
lity p, = h/h = 1, and Hgl = 0. But the identity element E
always forms a separate class. Therefore, in all the groups
<h, i.e. Hgl >

(except the trivial group Cl) k>1 and N

cL _
2 l’{G,!'n:i.ﬂ'_ 0.

THLOREM 7. If different partitions of a given integer
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h, as a sum of the squares of the integers Ni are possible,
then there are always such finite point groups of symmetry of
order h, which contain a maximum mean entropy of probability
distribution over the irreducible representations of Ni dimen-
tion in the group. There are no groups of zero mean entropy.
Groups with a relative minimum of mean entropy exist rarely.
Proof. There are abelian groups (Cn,sn,cnh) for each
finite h, which according to theorem 3 have a maximum mean

entropy Hék. Except the trivial group C partitions having

l,
zero mean entropy, for example for h = 4 (22), h =9 (32),

2
h = 16 (4), etc., do not exist, since each group has at least

one One~dimensional irreducible representation. Probability
IR d
G o
not always exist. They do not exist, for instance, for the
groups having h = 8 (22 + 22), h = 10 (32 . 12), h 16 (32 +

+ 22 +3.12), etc, For the group T of order h = 12, however,

distributions having a possible minimum mean entropy H

a partition to one three-dimensional and three one dimensio-
nal representations (33 + 3.12) takes place, which carries a
minimum entropy HG

2

, 88 compared to the other possible parti-
tions (12.17; B 4 22; Bd% - 2.22).

THEOKEM 8. Only such finite point groups of symmetry
of odd order h exist, which have a maximum mean entropy of
probability distribution over the classes of symmetry elements,
as well as over the irreducible representations of the group.

Proof. The groups of odd order, including those having
subgroups are always abelian. According to theorem 3 these
groups have always the maximum mean entropy.

THEOREM 9. The finite point groups of symmetry, which
do not have proper subgroups (the so called simple groups),
always have the maximum mean entropy of probability distribu-
tion over the classes of symmetry elements, as well as over
the irreducible representations of the group.

Proof. According to the theorem of Lagrange, the order
of a finite group is divisible by the order of each of its
subgroups. Then, if the order of the group is a prime number,
the group has no proper subgroups. Theorem 8 holds for the

odd prime numbers. For the unique even prime number h = 2,
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there exists a unique partition (2 = i 12), which carries

a maximum entropy (eqn.S). Hence the theorem is proved.

THEOREM 10. The mean entropies of probability distri-
butions of the matrix elements in the multiplication table of
the group, of the matrix elements in a row or column of the
table, as well as of the rows (or columns) in the group, are
equal.

The theorem is expressed by eqn.(7) and proved there.

The statistical property of the point groups of symmet-
ry, expressed by theorem 10, is a specific result for a group
multiplication table. In arbitrary h x h matrix, the mean en-
tropy of elements distribution in a given row ( or column) in
the general case is not equal to the mean entropy of elements
distribution in the whole matrix. This follows from the fact,
that when all the matrix elements are included in a common
set, a union of these elements into joint sets of equal ele-
ments takes place. This results in a different mean entropy
of the matrix and the rows (or columns) in it.

THEQREM 11. The mean entropy of probability distribu-
tion of the matrix elements in the multiplication table of a
finite point group is exactly half of the maximum mean entro-
py of a square matrix of the same h x h size, dividing into
two equal parts the total interval of values, in which the

mean entropy of such matrices is defined :

MT mex
Hy = logy, h = $.Hy 0 (16)

& i & iog. B* (17)
0 = UMATR &p

18 for an

The equation (17) was preliminarily obtained
arbitrary square h x h matrix, the mean entropy in which is
zero when all the matrix elements are the same, and convers-
ly, it is a maximum one when all the matrix elements are
distinct. The proof of eqn.(16) follows from the comparison

of equations (6) and (17).

THLOREM 12. The finite point abelian groups have less
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mean entropy of the matrix elcments distribution symmetrical-
ly in relation to the main diagonal of the multiplication
table, than the nonabelian :

MT,D

ugT’“ (ABELIAN) << M

{NONABELIAN) (18)

Proof. Equation (8) derived earlier refers to the non-
abelian groups. In the case of the abelian groups all symmet-
ry elements of the group commute. Then the number of pairs of
identical elements will be equal to half of the all non-dia-

gonal elements :

m = %(hz - h) >>m

Hence, the second term in eqn.(8) will increase, and the

mean entropy will be smaller for the abelian groups.

4. Theorems Concerning the Change in the kEntropy

Characteristics of Finite Point Groups

The molecules of different chemical compounds often re-
duce their symmetry when affected by various factors. This oc-
curs for instance in the case of substitution reactions, mo-
lecular vibrations, as a consequence of the effect of Jan-
Teller, etc. Accordingly, it is of interest to study the
change in the mean entropy of probability distributions, in-
troduced for the finite point groups by egns.{3-8), when

transition to one of their subgroups has teken place.

THEOREM 13. When a group reduces its symmetry to that
of its subsubgroup, the change in the mean entropy of each one
of probability distributions of symmetry elements i1s deter-
mined additively from the change of these quantities for the

transitions group-subgroup (G-SG) and subgroup-subsubgroup
(sG-58G) 1

AHg_ggq = DHy g + AHgy oo (19)

Proof.

An

T

o_sse = Hg = Hggg =(Hg - Hye) + (Hgy - Hygeo) =
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Since the proof does not depend on the type of entropy

measure, it holds for all quantities introduced by eqns.(3-8).

THEOREM 14, The change in the mean entropy of probabi-
lity distribution over the classes of symmetry elements, when
the symmetry of Cnv group reduces to Cn, as well as when Dnh
group reduces to cnh‘ is greater for even, than for odd order

of the main rotation axis n

AEClo o < As®e g > An®lo o (20)
-C O =G c -C
(n-1)v ““n-1 nv_ n (n+1)v “n+1l
Ax°to 0 <Ax‘le _ & >au%o 0 (21)
(n-1)h""(n-1)n nh™ “nh (n+1)h” “(n+1)h
Proof :

a) Cnv-Cn case., Expressing the mean entropy of the
groups under consideration as a function of their order,the
following equations can be derived :

AH_E =1+ 2/h, Anpo =} + 1/0 (22)
ol o c. _-C
Ny~ n nv 'n

r
The order h of the group Cn for an odd n is smaller or

v
greater, than the order h of the same group 8t n even, by two

units (n . h-2, and h' = h+2). Subtracting the two eqns.(22)
and substituting h, we obtain 1

]
for h

h -2, AHE/O=1}+2/h>0 (23)
for B _p + 2 , ABE/0=’} >0 (24)

Thus the inequality (20) is proved.

b) D h=C,n €@se. Analogically

AH _E =3/2 + 4/n 3 AH O =1+2/h’ (25)
Dun~Cnn HDnh'cnh



- 16 -

1+6 >o0 (26)

i
for h

]
g
]
n

AHL-:/O

/
for h = h + 2 , AHE/O—-}-Z/!I>0 (27)

In the last case the inequality (27) holds for each h,
since the minimum order of D , group is h = 8 (Uzh group).

Theorem 14 expresses an interesting feature of the mean
entropy of elements distribution over the classes in the Crlv
and Dnh groups - its different manner of changing at even
and odd order of the main rotation axis n. This result re-
calls the different change in the properties of n-alkanes,
containing an even and odd number of carbon atoms and even-

tually it could be a basis for some correlations.

THEOREM 15. The mean entropy of the elements distri-
bution in the multiplication table of the group, as well as
over its rows (or columns), reduces by 1 bit in transitions

from a group to a subgroup which has an order half as large:

MT _ row _ column _ -
Bl = B = AHG—SG =1 bit , if g = h/2  (28)
Eqn.(28) follows immediately from egn.(7) and the con-
dition g = h/2. The physical essence of this result is that
the uncertainty of matrix elements distribution decreases
exactly twice when a reduction in symmetry of the group of

order h to jits subgroup of order g = h/2 takes place.

THEOREM 16. The mean entropy of the matrix elements
distribution in the multiplication table of a finite point
group is an additive quantity equal to the sum of the mean
entropy of any of its subgroups and the logarithm at a basis
two of the quotient of the orders of the two groupst

MT MT
Hy = Hgy + log, a (29)

Proof. Let a finite point group has an order h. Let a
subgroup of this group has an order g = h/a. Then according
to eqn.(7)
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HG o e 10g2 h - log2 h/a = log2 a ,

which proves eqn.{29).

Theorem 16 holds for each of the entropy characteristics
of the multiplication table of the group, introduced by egn.
(7).

When a homomorphism of the group onto the subgroup exists
the quotient a from egqu.(2Y%) expresses the homomorphic ratio
(h: g=a : 1). Additionally, the case a = 1 occurs for the
trivial subgroup having an order g = h, as well as a mean en-
tropy equal to that of the group. Thus, theorem 16 dealing
with the homomorphic correspondence between two groups con-
tains as a specific case (a:l} the theorem on the equal mean

entropy of two isomorphic groups (theorem 1).

THEOREM 17. The mean entropy of probability distribu-
tion over the irreducible representations of a finite point
group is a semiadditive function of the mean entropy of the
subgroup and the quotient of the orders of the two groups :

IR IR
Hy = Hyg + log, a + FAN (30)

The correction for semiadditivity A is a simple function
of the order of the subgroup and has a different value for

most Subgroups. A=-0 fgr tge ca;es CZn-Cn' Cth-Cnh' cnh_
Cn' Dnd_Dn' 2nv-cnv’ Dnh_cnv’ Dnh_Dn’ Dh—O, et al. Some ex~-

amples follow where A #0 =

Q

€ v=Cpn AR %f£w A=8ﬂﬂlﬁfﬂmv A= 16/n,
etc.
5. Entropy Relation for Direct Products of Finite
Point Groups
Let a direct product of two groups Gl and G2, having an
order hl and hz, respectively, be considered. Let also the set

of symmetry elements in each of the two groups be partitioned
according to a certain structural criterion to k and m subsets:
N;,N;,...,N'. and N;,N;,...,N;. The probability distributions
associated with the two groups will be pi,pé,....pk, and
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" U ! "
pl,pz,...,p;, respectively. The group Gl

X G2 , called a di-
rect product of G1 and GE' has an order h1 X h2. The set of

its elements, Nl,N,,....N is composed of the products of

km’

each element of the group G. and all the elements of the G

1 2
group. The probability distribution associated with this

group will be PpsPpyecssPpa o where each one of the probabi-
lities Py equals the product of one probability of the first

group and one probability of the second group :

v
Py = pg.pi (31)

The following theorem holds:

THEOREM 18. The mean entropy of any kind of probability
distributions, associated with a finite point group, which is
a direct product of two groups is equal to the sum of the
corresponding mean entropies of the two groups:

H = H + H (32)

Gy x Gy 1 2

Proof. According eqn.(l) the mean entropies of the three
groups are, respectively

Kk
H, = - >

: > P log, P (33)
= H 14
HG2 = - & py-log, Py (34)
k.m
T T i B (35)

1ntroducing eqn.{31) in (35) one obtains

m
1 " W
e x6, = 7 2. pj.pj.log, PP}
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count eqns.(33) and (34), the theorem is proved.

Theorem 18 holds for each of the entropy characteristics

of the finite point groups, introduced by eqns,(3-8), since

the proof of this theorem does not depend on the kind of

probability distribution,
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