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A simple method for the group-theoretical reduc-
tion of representations in problems dealing with
linear molecules is given. Character theory is
used within the framework of a uniquely soluble
system of inhomogeneous linear equations. By this
algebraic technigue any cumbersome integrations
can be avoided. Examples for the groups Cgy and
Dgp are selected that appear in connection with
fundamental vibrations of linear molecules,

Te introduction

Much of the beauty and power of group-theoretical tech-
niques of one kind or another in chemistry is due to a syn-
thesis of rigorous symmetry arguments with quantum-mechanical
ideas and calculations of molecular properties. The quantum
mechanics concerning with the description of a chemical system
can be very complicated, but i1s is practically always possible
to extract by means of symmetry useful informations without
large numerical calculations. Two main approaches are visible:
from the qualitative view point geometric symmetry operations
(proper and improper rotations, etc.) and their homomorphic
mapping into a group of cperators acting in some vector space
are used to predict both the number and kind of system states
together with selection rules for the large body of spectros-
copic and magnetic material, respectively. There is, however,
also a quantitative aspect, not so well known among chemists,
that is dealing with the calculation of matrix elements for
important operators related to observables. We mean the power-
ful Wigner-Eckart theorem’' which allows by symmetry a factoriza-
tion of families of integrals into products of coupling coef-
ficients (Clebsch-Gordan=,Wigner type, vector addition type,
etc. , tabulated for most cases) and a small number of integrals
(so-called reduced matrix elements) typical for the problem.
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The crucial peint in each quantum-mechanical treatment
is the selection of a sufficiently dimensional physical space
for the specific problem under consideration from which the
constructions of both the Hamiltonian and overlap matrices fol-
low., The interesting dynamical variables (state vectors, enerzy
expectation values, cte.) are found by solving the sccular or
eigenvalue problem through proper diagonalizaticns, It is in
that area where group theory can be of great use for reduction
of the order of these matrices: similarity transformations will
generate direct sums of mutually independent matricesz. In other
words, the symmetry properties of the system define both the
size and structure of the corresponding eigenvalue algebra. In
the context of this paper we are considering only point group
symmetries, i.e. in the case of molecules an intecrchanging or
renumbering of equivalent atoms in the nuclear framework by any
rotation , reflection, and combinations therefrom. These sym-
metry properties are closely related with those of the competent
Schridinger equation due to invariance of the Hamilton operator
under the group of symmetry operations for the molecule by com-
mutation., A further observation is concerned with the behavior
of the eigenfunctions. It turns out that these functions are
basis vectors (in the physical space) for matrix representations
of the symmetry group. Furthermore, and this is very important,

the so=-called irreducibility postulate3

guarantees that this re-
presentation is irreducible under the action of the group (ex-
c¢luding "accidental degeneracy"). It must, however, be clearly
understood that this postulate is a consequence of physics,

and has nothing to do with group theory4.

The consequences are heavy: making full use of symmetry
means the decomposition of the starting vector space into those
invariant (stable) subspaces which are irreducible in relation
to the invariance or symmetry group of the Hamiltonian. Before
actually dealing with matrices, symmetry-adapted basis vectors,
and calculation of matrix elements (i.e, integrals), respecti-
vely, important aspects of the problem can be gained by incor-
poration of character theory for the reduction of the physical
representation space. This step is both useful and simple (at

least for finite groups) since it is completely independent of
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any basis choice. On the other hand, calculations of both ma-
trix elements and selection rules involving certain specific
operators are dependent upon the selected bases in one and
the same space. The real importance of representation charac-
ters for applications of symmetry arguments to physical and
chemical problems is established in the fact that every (fi-
nite-dimensional) group representation cover the field of com-
plex numbers (with the reals forming a subfield) is uniquely
determined up to equivalence by the set of ordered numbers
that are the traces or characters of the corresponding repre-
sentation matrices.

The point groups of chemical interest are subgroups
of the orthogonal group in a three-dimensional space, 0(3),
and its subgrous 07(3) = SO(3) with real unimodular orthogonal
transformations. In case of matrices with complex elements one
has, respectively, to consider the unitary groups U(3) and
SU(%). The representation theory of these groups is well known

and a large body of literature exists5

. The point groups can
be divided into the discrete and continuous representatives.
Among the latter category the groups Camrand Duﬂl(in Schonflies
notation) are important for linear molecules.

The purpose of this paper is a consideration of the
intrinsic difficulties in the reduction of representations
for continuous subgroups of 0(3) relevant in chemistry. We
found it very unappealing to use for these groups (invariant)
integration procedures because of their Lie group nature to
find the irreducible constitutents of a given representation
gpace, In most cases of practical interest, e.g. in the fields
of normal vibration treatment and ligand field theory, only
a limited number of stable subspaces is important. Therefore,
it seems desirable to look at finite-dimensional algebraic
procedures (despite the infinite number of group elements).

The principle of the proposed method is to find a
system of nonhomogeneous linear equations with a unique non-
trivial solution, i.e., the frequencies of the irreducible
parts in the vector space., The heart of the matter is the
construction of a suitable coefficient matrix of the systiem
whose elements are the irreducible {simple) characters. Their
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selection depends upon both mathematical and physical arguments.
Kach different problem affords a different set of simnie charaec-
ters, Furthermore, the necessary recducible (comnound) character
vector is partly denendent upon the coefficicnt matrix of the

gystem of equalions used, In our prescnt approach we concentrate

on the groups Omv_and D ,applying the method to some charac-

teristic examples for vgﬁ;utional analysis.

In Sec.2 we give group-theoretical information on those
aspects for continuous groups that are necessary for the ctruc-
ture of Cmv_and DCDh . Sec.3 is devoted to the algebraic reduc-
tion procedure for representations of somc vector space. These
formal arguments will be combined in Sec.4 with physical reguire-

ments to solve some typical problems by sample calculations.

24 Group-theoretical remarks

Finite peint groups are nowadays an indispensable aid
for many branches of both theoretical and experimental chemistry.
The character tables are consciously used for reduction of re-
presentations and charatcrization of state cnergies and basis
functions (e.g., the "orbital business"). On the other hand,
point groups of infinite order, like the rotation group of the
sphere (important for free atoms and ions), 0(3), and the sub-
groups S0(3), Cmv , and Dmh.’ respectively, are used more in-
tuitively in chemical applications, This is probably caused by
the fact that a simultaneous existence of both the inifinite
number of group elements forming a continuum (in a topological
sense) and the closure property under the group multiplication
law (in an axiomatic sense) is really not very encouraging for
the mathematically untrained user of such groups. Looking in-
to the literature, and there is a large body available with all
levels of sophisticatione, is in most cases not stimulating
enough for the practitioner: he will be forced to fight around
with terms and high brow concepts, e.g., continuity in topology,
compactness, connectivity, neighborhood of a group element,
invariant measures and integrals, ectc. In this context we are
only dealing with continuous groups that can be derived from
the so-called axial (rotation) group as the basic building block.
Therefore, great simplifications in the concepts are possible.
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Despite excellent treatments of the rotation groupT it seems
appropriate to give here a short summary of the groups Cmv
and Dqﬂlin relation to our reduction method,.

Let us start out from the simplest continuous point
group, Cw , that arises from the possible rotations of some
linear molecule (e.g., N,, HCN, NZ, C0,, diacethylene C4H2)
around its main axis where all(!) constitutent atoms are si-
tuated. What are these possible rotations like? Elementary
gecmetrical drawings will show that in contrast to the finite
cyclic point groups, C,, the angle of rotation ¢ = 27/n ra-
dians can take any value producing thereby unchanged molecu-
lar configurations (i.e. the idea of a symmetry operation).
This means, vice versa, that n is not limited to integer wva-
lues,but varies from 1 to . Since the rotation axis is fixed
in space (for convenience we can identify it as the z axis of
a cartesian coordinate system) the rotation angle § defines
unambiguously the element R{#). The same is true for R(B)
where B means an angle again, etc., and there is a non-de-
numerable number of such rotations all defined by their angles
about the same axis. Furthermore, this unique axis makes the
set of all rotations by all (real-valued) angles g, B,...

a closed manifold under the binary operation "followed by"

and clearly a group as aquick glance at the group axioms re-
veals. Here, R($ = 0) and R(-g) are the identity and the in-
verse, respectively. Lastly, the "parameter" (rotation angle)

¢ is itself an element of a closed and bounded set of points,
e.8., 0<$<2m. In more technical terms,this is an example

for the concept of compactness. (An extension of the parameter
manifold are the Eulerian angles a,8B,Y that define the elements
of the rotation group in the Euclidian 3-space,) It turns out
that the emphasis in the continuocus groups is shifted from the
group elements to functional relations between the (finite)
number of parameters whose real values vary continuously with-
in their (bounded) defining regions. One further property is
relevant: let f(a«,B,7,..) = # be a functional relation to de-
termine the parameter ¢ from the parameters «,B3,7,.. . If the
mapping f is an analytic function in the sense that f(a,B,7,..)
can be differentiated any number of times with respect to a
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or B or ¥ or .., then the corresponding group elements form a
Lie groupB.Therefore, in our case the group Cm is an example
for a one=parameter compact Lie group. In addition the group

is abelian since arbitrary rotations about an axis always com-
mute, We now leave the abstract concepts of Oa)and turn towards
its representations.

Ca,is generated asa peint groun by the action of the
position vector with invariani origin (the "point") in %-space,
ey BE (31,3 ,ﬁ%)(x,y,z)T in the usual notation. Since the
z component of T is not affected by the rotations Rz(ﬁ) about a z
axis the natural basis to gencrate matrix representatives of
the group elements is the set of unit vectors, (3},@&), along
both the x and y axis.By trigonometry,we extract (using the ac-

tive point of viewg) the matrix representation for Hz(ﬁ), ﬂz(é):

2.1 R,(8) (3,,3) = (8,,8,) B,(4) =—>R_($) = [eos $,-sin ¢]_

sin g, cos ¢
Due to the e¢yclic nature of the group Ez(d) is termed a genera-
tor for the matrix group S0(2) isomorphic with Cp Via Eq.2.1,
and the concept of an infinitesimal operator being important
in the theory of angular momentum appears in a natural way by
making the angle § infinitesimally small but not zero'", It is
obvious that {Ez(d)} belongs to a reducible representation
(rrep) since C, is abelian and all irreducible representations
(ireps) have to be one-dimensional. The reduction is via a ba-
sis transformation from the real space of the position vector
to the complex (unitary) space of the spherical harmonics, i.e.
the functions{Ylm(O,ﬁ)}well known in mathematical physics. Fur-
ther considerations of the continuity and periodicity of the
functional relations of two angles, e.g., ﬁ1 and ﬁg

2.2 2(8,)8(8,) = £(4, + 8,) = £(8,)2(6,)

(g + 2m) f(4) ’ érﬁ-lgﬁsz ER,
show that the only solutions of Eq.2.2 are because of

2.3 R (8) ¥,.(6,8) = ¥, (6,6-§) = exp(-inp) 1, _(0,8)

in the form of one-dimensional matrices (= characters):

It

2.4 ™ (4) = exp(img) , with m = 0,41,42,43, 0004
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We end up with a denumerable infinite number of unitary ireps,
all one-dimensional, for Ca)consisting of a non-denumerable
infinite number of group elements! This is a striking differ-
ence from the finite groups and must have consequences for
both the orthogonality relations of the ireps and the reduc-
tion procedure of rreps, For the property in Bq.2.4 some re-
ferences use the symbol for the special unitary group, SU(1)},
instead of our symbol Caf The character table is completely
determined by Eq.2.4 where the integer m labels the ireps and
is, in physical terms, a so-called "good" gquantum number for
both state vectors and eigenvalue problems in the mth subspace.
From the chemical point of view the group CCD is not
very important since all linear molecules have more symmetry
than the rotations {Rz(ﬁ)}. By inspection, one discovers al-
ways an infinite number of reflections ¢, in all mirror planes
containing the molecular axis. (c% belongs to the category of
the "improper" rotations in contrast to the proper or genuine
ones.) From abstract group theory it turns out that the appear-
ance of only one symmetry operation c} generates by action on
the group CGH1a new non-abelian group that is not of the direct
product type since a, and Rz(é) dont commute. A more detail-
led analysis12 shows that the new group, named C is a semi-
direct product, i.e. C

@v ’

_— CG)C) CS where CcD is a normal sub-

group, and Cs = {E.U&}. To learn the character structure we
start from the relations in Cmv’j"e'

2.5 R (#) o, = o R (-4} , and
2 _ 5
2.6 O, =9 = ¥ .

Therefore, the set {Rz(ﬁ),ﬁz(-ﬁ)}forms a class {of conjugate
group elements) often written 2Rz(¢), whereas the infinite

many dv are also a class. A proper choice of bases in the sense
of Egs.2.1 and 2.3 will yield the matrix generators

2T RZ<¢)= exp(-img) , 0 5, 0,1
0 , exp(img) 1 5 B
For m # O the functions {Ylm’ylﬁ} with m = -m are a natural

basis for the 2-dimensional ireps, and there are no higher-
dimensional ireps in that group. Besides the trivial irep or
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identity rep there must be, as a conseguence of £q.2.6, a sec-
ocnd one-dimensional rep in the group with character -1 under
the {Gv))' Withthese informaticns the character table in Table 1
is obtained where the entries have the usual meaning.

Table 1. Character table for Cmv o = Vsliwmes @
Gw G B 2RZ(¢S) ® o, | relevant bases
o =T1 =3 7 1 1 1 z; 2%; x°4y°; Y10
L, = 4, =3 ° 7 1 -1 R,
I‘m = B, 2 2cos(mg) 0 for m=1: (RX,R ) Cxaa )i
(xz,y2); (Y1;,¥;7)
for m=2: (¥,,,¥5)

For those linear molecules having inversion symmetry
too, e.g., NZ' COZ' Ng, a new non-abelian group, named Dcnh 5
arises that can be described in different ways, i.e. as direct
product va® Ci’ with both cmv and Ci ={E,i} normal subgroups
or,respectively, as a semidirect product Ccc ® Cs®ci =
= Cm ® 02}1 , with 02h = iE’Uh"02z’i}' We prefer the direct
product formalism since the character table of Dmh originates
from those of the parent groups simply as supermatrix E(Dmh) 3

2.8 X(D,,) = X(C )@XA(C;) = | X(Cy ). 1, X(Cp) o 1
X(Cpy) « 1, KCp ) =1 7

where E(Cmv) is the character table as matrix taken from Tab-
le 1. The numbers in the direct product matrix of Eq.2.8 be-
long to the (matrix) character table of the point group Cye
There will be no problems in labeling the non-countable in-
finite number of elements into classes and the discrete infi-
nite number of arising ireps IE in using Eq.2.8 correctly. Let
us note here that we use the character tables of Cmv,and Dmh
in a modified matrix form in our reduction method described in
the following section.

In concluding this section, we mention that from a to-
pological view point the presence of a discrete subgroup (CS,
Ci, CZh) besides the continuous subgroup Ca)modifies the some-
what naive conception of Lie groups from above. Since, however,

compactness remains we need not go into further detailss's.



. The algebraic rcduction method

Most applications of symmelry analysis in chemistry
are resting upon representation thecry., Furthermore, the star-
ting reps are Tinite-dimensional unitary (or orthogonal) ma=-
trices in the case of finite groups. A well-known theorem5 se-
cures that such rreps can always be reduced uniquely into a
direct sum of unitary {or orthogonal) ireps. These ireps are
associated with the physically relevant subspaces of the speci-
fic problem. Character theory gives a very quick information in
that respect, or convenience c¢f the reader we summarize the
(well known) relevant expressions for finite groups G: a reduc-
tion process due to the theorem cited above for the rrep I and
the corresponding character system X r implies:

5.1 r- > a 1 =>xP(w - > a, ¥, reo.
i=1 i=1

The important feature of Eq.3%.1 is the uniqueness of the non-
negative integers in the set {ai}. Specifically, a; labels the
number of times (= frequency or multiplicity) the irep Ti is
contained in T. Of course, the {IE‘ is only determined up to
equivalence. By means of the famous orthogonality relations for
simple characters,the reduction formula follows from Eq.3.1:

5.2 &y = (1/g)ZR Py BD@*, vreso,

where the summation ia over all (= g) group elements in G. The
complex conjugation mark assures the real nature of {ai}.

Using this reduction procedure for continuous groups G
would imply an infinite sum in Eq.3.2; the way out is a special
integraﬁion over the defining regions of the parameters (angles)
instead of the group elements. The technique of ("invariant")
integration involves among other specialities the concept of a
"group volume" in the parameter manifold since the order g has
no meanings’e. Since our method aveids any integration via a
modified form of Eq.3.2,we can leave this cumbersome route,

Fortunately, the continuocus groups G = Ca), Cmv-' Dmh’
and 0(3), among others, are characterized by compact parameter
spaces., This property causes the validity of some important
theorems from finite groups also for these category G. Without
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proof”, we summarize the basic facts for our purposes:

3.3 a) each rep of a compact group is equivalent to a uni=-
tary one;
b) any rep is completely reducible into finite-dimen-
gional ireps via the direct sum formalism;
¢) inequivalent ireps are orthogonal.

Due to these properties,Eq.3.1 is taken as the starting point
for the algebraic reduction method in compact groups (later
in the paper applied to C_and Daﬂl) using (without loss of
generalization) character theory:

Let us look at Eq.3.1 from the view point of a linear
transformation relating two vector spaces over the same field.
By defining proper Dbases, we can represent the mapping in
terms of a matrix form which is nothing else but a system of
linear nonhomogeneous equations. The method implies, there=-
fore, the selection of both necessary and sufficient equations
(of the type given in the character part of Eq.3.1), i.e.

3.4 X2 s x0),
where the entries have the following meaning:

3.5 2 = 3 @) xRy, 00, x@ (R, 000}, for the
"canonical"® R € compact group G;
as= {61.a2,....,ar,...} yi.e., the multiplicity vector;

X(G) is the "canonical" part of the character table of G.
The emphasis to the word "canonical" is to remind the user of
the problem under investigation that physical arguments are
responsible for the selection of the character vector X =
and the interesting part out of the character matrix X(G) con-
taining the chemically relevant ireps, respectively. We will
come back to these aspects in the next section.

Mathematically, we are looking for a unique non-trivial
solution of the unknowns {ai}in Eq.%.4,given the transforma-
tion matrix X(G) and (row) vector X‘~’. Again, for convenience
of the reader, we restate the criteria from the theory of
linear equations:
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3.6 Theorem, Eg.3.4 has a unique non-trivial solution:
& x(6)"! exists .

Therefore, the (row) vector a can be obtained from the matrix
form X T E(G)-1 or via the theorem of Cramer, for example.

Concluding the mathematical part, we remind the reader
of the fact that in the case of finite (point) groups the cor-
responding character tables intrinsically fulfill Eq.3.6 with
rank r = number of classes = number of possible ireps.,

4. The method in practice

As cited previously, the method is based upon the ba-
lance of the significant symmetry features of the problem with
mathematical requirements for a unique solution. We present the
procedure and will immediately apply it for the compact groups
Cmv_an Daﬂldealing with the calculation of fundamental vibra-
tional species for certain linear molecules. This example is
used because most chemists performing infrared and Raman spec-
troscopic routines will be familiar with it, and the method is,
therefore, not hidden behind heavy physical arguments.

The construction and solution of Eq.%.4 will in any case
imply a coefficient matrix, i.e. character table X(G), of frame

4.1 T 1 9 awesew
12 - - . . .
x(G) = ls o o . 1, iee. x((E) = Ly
lr . L] - -

where both the first row (= identity rep) and column (= dimen-
sions of invariant subspaces realized by ireps of G) are "ca-
nonical" informations in view of Eg.3.5. The next step includes
the search for the size of X(G) by determination of the rank
index r due to the theorem Eg.3.6: let r_ be the number of gen-
erators for the (compact) group G and let Ty be the number of
problem=relevant ireps therein that must be selected by physi=-
cal and chemical reasoning. In this context we have, contrary
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to common usage in group thecry, in rg the identity element E
of G included to have agreement with the information content

of Eq.4.1., The size of X(G) is always given by an equal (= r)
number of both lines and columns, i.e.

4.2 X(6) = type(r,r) = type(r;+ (v-r),r + (r-r.))

The recipe depends upon our knowledge of r; and rp. Three pos-
sibilities have to be considered: :

4.3 Case I :r; = . (= r), exceptional situation;

Case II : r, <:ri (= r), usual situation;
Case III: T <:rg (= r), exceptional situation.

Depending upon the specific situation, one has to select either
(r—r ) additional group elements or (r-r ) additional ireps for
completlon. The missing simple characters must then be calcu-
lated using standard formulae. These selections for the matrix
X(G) are arbitrarily up to the controlling requirement that

the rank remains r for the three cases, i.e. det(X(G)) # 0.

The final step is the calculation of the compound characters

in the vector E(r of Eg.3.5 for those group elements that

have finally been selected for E(G). With these informations

at hand Eq.5.4 1s complete and uniquely soluble for {ai}.

Examples. For illustration purposes we follow along the
usual standard treatments for (elastic) motions of linear mo-
lecules13. We are concentrating on characteristic vibrations
(including translations and rotations of molecules as a whole)
in symmetries Ca“rand Daﬂl' The physically relevant ireps for
translations (TX,Ty,TZ), rotations (Rx,Ry, but R, is not in-
volved), infrared vibrations (1.rank tensor), and Raman vibra-
tions (2.rank tensor) are collected in Table 2. The g(erade)=-
part and u(ngerade)-part of D p ~ireps is obtained from the
first and second line, respectively, of the supermatrix in
Eg.2.8 with Table 1. For the number and quality of the so-cal-
led fundamental vibrations (= normal modes) the two bottom
lines in Table 2 are appropriate. It is a remarkable feature
that only a few ireps are "canonical" for general vibrations.
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Table 2, Canonical ireps for general motions of linear
molecules.(Symbols are explained in the text.)

property Cch — Dmh N
Tes Ty E, By

Tz A ATu

Rer Ry E, By o

RZ

infrared Ay By A1u’ E1u
Raman Ay Eqy E2 A1g, E1g, E28

It is favorable for the user to have general formulae
at hand for the characters of the genuine vibrational part in
linear molecules. These data, Xif%(ﬁ), are for some typical
general group elements (symmetry operations):

4.4 Xvib(E} =3N =~ 5 (for N-atomic linear chain);
Xvib(Cn) = (np— 2)(1 + 2cos 4) + 1, $ = (2n/n)
xvib(dv) = np = xvib(cé) = _np v
Xvib(l) = -3np +1 3

n_ is the number of unmoved atoms under the action of R € G,

and the notation Cn will serve instead of the symbol Rz(é).

Special values for (1+2cos ¢) are collected in Table 3 for the

most useful elements R € G for G = Caﬂr'Daﬂl'

Table 3. Useful characters (1 + 2cos ¢) for some R.

element R E 02 03 04 06 UV i
Xpip(R) sy-1 o fr 241 }|-3

The informations in Eq.4.4 and Table 3 are used for
the calculation of the character vector X r for the rep rvib'
Since the vector coordinates are dependent upon X(G) we need
data for simple characters. These are given, again for con-
venience, in Table 4 where the calculations are based in
parts upon Table 1. Now we are ready for some examples and
will treat specific molecules for Cases I and IT in Eq.4.3.
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Table 4. Selection of simple characters for X(G).

column R B 02 03 04 C6 crv

A, =2 1 1 1 1 1 1 1

¥ - for D_. -parts:
Ay =X 1 1 1 1 L . @h TPArLE:
By =TT < B2 el g ! A g X(i) = + X(E)
E, = A 2 2 a1 =2 - 0 wr X(i) = ~ X(E)
B, = 2 =2 2 0 =2 0

£, o o o 0 x(c}) = x(o)x(4i)
B 2 -2 - o 1 0

Case I - example. I'or the group Ca“rthere are three
canonical generators (et See.z),and three relevant ireps de-
termine the vibrational motions (cf. Table 2), i.e. BomEgm 3.
This means for X(G) in any case the structure:

4.5 E C, o
A, A A
E, |2 =x © XChpy ) -
E2 2 Xy 0

In principle we are free in the selection of the rotational
generator C (n £ 1,i<n<®). The only requirement is the non-
singularity of X(G), e¢f. the discussion following Eq.4.3. We
can take any rotation (around the molecular z-axis) for values
of X4 and X, in Eq.4.5 except 03' The simplest case will be

04 from Table 4,with x1=0 and Xy= -2,

Let us take the specific molecule D-C=C-H, Since N=4
and n, = 4 for R ={E,C4,d&}the vector g&ﬁ% for Eq.3.4 has the
coordinates calculated with Egq.4.4 and Table 3:

4.6 E C 0%

€8 - g7, 5.5 .

Eq.3.4 can now be formulated in terms of three (= r) simul-
taneous equations considering Eqs.4.6 and 4.5 using 04:

4.7 A E B
1 1 2 (r) I
T o= a; + 2a, + 2a3 s ——lises TV-7(E) =;Z:ai 1i)
3 = a - 2ay , 1=

A%
I

8.1 3
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with the solution a = {a1,a2,a3} = {3,2,0}. The rrep Pvib is
therefore the direct sum of ireps 34, ® 2E, ., Hence there are
three fundamental frequencies of the non-degenerate A, -type
and two double-degenerate ones of the E1 ~type for this species.

Other Cmv' molecules can be treated in like manner,

Case 11 = example, Due to the direct product nature
of Dmh from the parent groups Ca)v and Ci there are four ca-
nonical generators, i.e.{E,Cn,o'v,i}, but vibrational problems
afford five ireps (cf. Table 2), i.e. r <r; and we need one
additional group element (e.g.,a second rotation) for X(G).

A useful matrix is for instance (with Table 4) ,where Cé: 10‘
' :
4.8 E 2 (14_ 0‘v i
A1g 1 1 1 1 1
E1g 2 0 0 o} 2
EEg 2 0 =2 0 2 = Z(Dmh) W
A1u 1 -1 1 17 =1

Einl 2 0 0 0 =2

We consider two molecules, i.e. azide ion N; and di-
acetylene H-C=C-C=C-H., The following data are obtained from
Table 3 and Eg.4.4:

4.9 E Cé 04 @, 1
(P)P 3 t 32 2 1 } for azide ion (N=N=N)
-)Evib = 4 o] 2 2 C
(I‘) A5 & & 6 O} for diacetylene 2
—v:l.b =13 1 B 5 1

The solutions of the two linear equation systems, Eq.3.4, are
easily obtained (because of the non-negative integer nature
of the multiplicity vector a). For N a ={1,0,0,1,1}and for
diacetylene a -{3 2052 2} This determines for both cases
the number and quality (irep, degeneracy) of the fundamental
vibrations.

With the same method it is of course possible to solve
other more elaborated problems in that field, like selection
rules for combinations frequencies or overtones that involve
direct product characters with special symmetry adaption tech-
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niques. Since nc new aspects appear for the algebraic method
besides an increase of the number of canonical ireps and, con-
sequently, a larger rank of the matrix X(G), we dont pursue
these applications here.

94 Conclusions

In this paper we have presented an algebraic reduction
method for reducible representations of the compact groups C(mr
and Dmh.This technique based upon character theory avoids the
usual integration procedures for continuous groups. The basic
idea emerged from the fact that for most applications of both
physical and chemical interest only a relatively small number
of irreducible representations {ireps) is important (i.e. "ca-
nonical™). Closer investigations (in Sec.3) have lead to a
much simpler approach of the reduction problem via unique and
non-trivial solutions of Eq.3.4 as a matrix form of low order.
The choice of the character matrix X(G) therein is dependent
upon both mathematical and(!) physical criteria. The applica-
tion for a problem in vibrational analysis of linear molecules
shows clearly the simplicity of this method.

Finally, we are considering at present this technique
for applications in the groups 0(3),S0(3), and certain finite
groups of large order.
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