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A new method to study HUCKEL parameters is suggested, wherein the
essential peint is the number of solutions of a system of nonlinear
equations. This system of equations is derived from a simple model
effective HAMILTONIAN and is discussed for the case of 2pa and 2th
SLATER type orbitals.

1. Introduction

Interpreting semiempirical theories one can construct effective HAMIL-
TONIANs and deduce properties of semiempirical para1"r1eter:s1 .

Here we want to describe a less involved method of studying HUCKEL

parameters, which is entirely different from ab-initio oriented efforts.

To describe molecular properties resulting from a quantum mechanical
formalism one may assign fixed numer ical values to the HUCKEL para-
meters "yi". On the other hand in general one has a system of non-
linear equations with the HUCKEL parameters given in a functional

dependence of parameters "z,
J
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The parameters zj (for example: "effective nuclear charge”, bond
distance", etc ) have some "a priori character", appearing in mole-
cular electronic SCHRODINGER equations of different sophisticated
levels (cf sec. 3). Collecting the parameters zj to a tuple z and
resolving the system (1) for given numerical values of yi we are inter-
ested in whether we get one or more tuples z. We think that relating
the HUC KEL parameters to parameters of a SCHRODINGER equation
by a one to one correspondece might be a qualitative foundation of
HUCKEL theory or HUCKEL type theories. We do not want to treat ex-
plicitly interactions or "effects" which are not explicitly considered in
HMO theory, such as electron interaction and correlation effects. Know-
ing that in HMO theory such interactions are built in apprapriately1 s
after discussing equations (1) we are looking for procedures by which
one can extrapolate from approximate model equations given through
"p iM" to better equations, given through more exact P which also
depends on correlation effects etc . This extrapolation is done by sug-

gesting the inequality (13) (see below).

2. The method
We now redefine the following terms:

Zi

(21 G2 ), atuple of "a priori parameters" which can be

s

¢ found in SCHRODINGER equations. They may be
identified with (effective) nuclear charge and geo-
metric informations like bond distances.

it o (y_l ,yz, siods a tuple of HUCKEL parameters, including hetero~

atomic parameters and in general consisting of

different COULOMB and resonance integrals. The

overlap integral, not being a typical HUCKEL para-
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meter is not accounted for iny.
P: = (®1,\02, ..), atuple of functions, which are occuring in system

(1). @ will be understood as a mapping

P: z —> y (2)
Within the concept of mapping the HUCKEL parameters are not necessar-
ily fixed numbers, but functions of z, which simplifies some arguments.
Beyond this, (2) be a unique relation. This is not only because of mathe-
matical reasons, but expresses also the physical premise, that for ex-
ample we restrict ourselves in describing HUCKEL parameters as fitted
exclusively to ground state one electron properties. In this context
FFlEED1 has shown that in general one should expect an implicit depen-
dency of semiempirical parameters on energy, causing at least partially
the ambiguity of semiempirical parameters. R. McWEENY2 too,
stated somewhat more explicitly that the HMO parameters are related to
more than one expression of a self consistent generalization of HUCKEL
theory. Therefore it is not trivial to require the relation ¢ being unique.

Y beingunique justifies to denocte this relation as a mapping.

The mapping Y can be thought of as constructed or at least identified by

; ﬁiHnidI

o, =
|3ij = fqil—mjdt (3)
v 2 Geswithamms Bhgesd =8p0s)

i ij

with 'qi being normalized and usually orthogonalized atomic orbitals,

H being an operator acting only on a single particle according to the HMO
conc9pt3. This means that the derivation of the equation system is re-
stricted to the "literal™ or "theoretical" part of the HI'VIO-paran"neters1 -
The influence of the correlation part and other neglected interactions

are taken into regard by the inequality (13).
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In our opinion a good semiempirical theory should have at least the

following properties:

a)

b)

After fixing the values of all yi of the tuple y (for example by
fitting to experimental data) there must be such tuples z that the

*, is an image of at least one preimage tuple

fixed tuple y, say y
z, say 2k through the mapping ¢ .
The above statement, holding at best for all tuples y that are rea-
sonable for quantum chemical purposes, means that ¢ is a surjec-
tive mapping (here: a surjective mapping with respect to the set of
y-tuples "D")4. Now let be L(p,R,y) the number of solutions of
(1) for a given tuple y, with given ¢ and with a set R of the z
tuples, then we require

L(yp,R,y) > 1 forall y ¢ D (4)
To a given fixed tuple y there should exist only one solution z of

(1), or in other words: the resolution of the system (1) should not

lead to a multivalued result. This condition originates from an entirely

different point of view than that taken by FREED and others1, that is
we simulate practical HMO work {which requires surjectivity), and
then look for an unique relation between v € D and z € R. This
means: Turning from HMO parameters to the a priori parameters by
means of an injectivity (one to one correspondence) yields a well

defined theoretical background.

Equivalent to both criteria a) and b) is the following one: The

mapping ¢ must be bijective (injective and surjective), or expressed

operationally: @ must be invertible, i. e.

L(yp, R,y) = 1 forall y € D (5)

Inclusion of the interactions relevant for the correct description of HMO-

B
parameters would give a "best" mapping "¥ ", which to handle, how-

ever, would be troublesome. The two properties a) and b) in mind as

criteria one is only interested in L(y,R,y). Not knowing the explicit
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B
analytical form of @ ~ which also includes correlation effects we dis-
. . M M M
cuss a simpler model mapping ¢ = (LD1 s \92 ,-=.), evaluate
M M
L{p ,R,y) associated with system (1) and try torelate LGp ,R,y)
B

to L(w ,R,y). The restriction to the number of solutions rather than
the exact numerical construction of the solutions (which could only be
done by rather involved ab-initio methods) should justify our approxi-
mations. The correlation parts etc are given reasonable care by the

M B
relation between L(yp ,R,y) and L(p ,R,y).

3. The model to construct LPM

We restrict ourselves to diatomic molecules, the simplest systems
with two types of HMO parameters d i and . To get some feeling
how criterion (5) works on the basis of the HMO definitions (3) in
zeroth approximation we take a molecular electronic SCHRODINGER
equation:

AMy - E¢

with | being a linear combination of two atomic orbitals centered at
AM
different nuclei and the model HAMILTONIAN H ' given by
ANM

H™ = -(1/2)8 - (nyz /r) - (nzzz/rz) (a.u.) (6)
This operator will be used in the RAYLEIGH SCHRODINGER quotient.
ri: distance between the electron and the nucleus i
n.: the effective principal quantum number of the orbital associated

i
with atom i.

The zi’s have the following meaning:

z, and 22: qualitative measure of the attraction between shielded
nuclei and the electron in 1 i

T distance between the two nuclei (z3 is involved in the
evaluation of two center integrals).

Apart from the nuclear repulsion term a HAMILTONIAN of type (6)

has also been used by R. L.FLURRYS for an analysis of charge transfer
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complexes. Normalized 2p0 or 2p1_E SLATER type orbitals are used, with
z, and z, as orbital exponents, respectively. At this level of approxi-
mation we do not care for any orthogonalization problems. Certainly it
would be very interesting to use L'c')WIZ}le—cxbitals6 at least in the case

of 11 -systems.

The HAMILTONIAN (8) could be thought of as part of a more sophisti-
cated effective HAMILTONIAN. Thus the resulting mapping lpM is ex-
pected not to be a too bad starting point. The HAMILTONIAN (8) inserted
in (3) leads to matrix elements Hij which are functions of the para-
meters zj . Our model does not yield any energy dependency of yi as
functions of the "a priori parameters" z through LDM. The mathematical
requirement tPM to be single valued is obviously given. To treat either
the 2p, - or 2th -case underlying (6) in (3) we take 2p0 - or 2pﬂ-STOS
and do not differentiate any more. This means among other things that

in both cases we use pure HMO-formalism.

With the HAMILTONIAN (6) and with specified 1, one obtains the follow-

ing mapping:
yiio= Hyy s ﬁ1':'m’11°'I = 'P1M(z1'22’23)
vy = Hy = [ AMner = 0 M2,z 2!
gt = Hyy = fnzﬁandt = LPSM(Z1,22,23)
=y = ™(2)
As a domain of lpM = (¢1M,‘92M, \DSM) for doing calculations we used
the following subset of R:
N: = {(21,22,23) : 0.5 ¢ z], £ 5; (awus) j= 1,2,3}

Our mapping corresponds to a simple electrostatic model (apart from

the kinetic energy term -(1/2)A) in which a 2p0 or a 2pn electron roughly
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sees the shielded nuclei or the shielded nuclei together with the field of g-

electrons.

4, Results
7
In a previous paper we employed the functional determinant

3(y 1 ¥51¥y)

det J (z) = det 3 (2

e (8)
as a function of z to find out whether the mapping is local injective.
Studying the behaviour of (8) leads to the following results:

a) For the 2p0 case as well as the 2pn case the functional determinant
does not identically vanish in N, which means that the three functions
LPiM are functionally not dependents as necessary for practising HMO
theory. Otherwise two given numbers for, say H and H o would

R 1
patently imply a numerical value of the third parameter H__.

b) For 2;:“ -STOs, det J # 0 for all z € N. This means tha‘t'22
tpM(2pn) is local injective everywhere and hence locally possesses
an inverse. This, however, does not necessarily involve the existence
of a global inverse4.

c) For 2p0 -STOs, one finds
Q: = {(21,22,23) : det J (2) =0},

which dissects the set N into two regions. In Q the mapping is
M
singular. At least a linearizationof (2p0)

Y”n =c + [J(zo)] -z

with a tuple ¢ of constant numbers and the functional matrix
[J (Zo)] calculated in points Zo of Q has no inverse. We, however,

are primarily interested in global inverse mappings.

Simplifying matters, we introduce the restriction

2, =2y = Z, whencenow : z = ('2,23)
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and obtain the simpler mapping

_ ~M,~

Q /431 (2,23)

B 5.V, 2 (9)
~ M _ ~ M ~ M

P = (\D1 Vs )

with

N o [(E,zs) t 0.5KE LS, 0,562 48 (a.u)} .

From the behaviour of the functional determinant

det J (z) = det —%-E—%% (10)
3

as a function of the tuple z and from a graphical analysis yielding the

number of solutions of (9) for fixed values of @ and T we could de-

duce the following results:

a) For the 2;:)[_t case in N there exist no zeros of the function det I(z)
(Eqg. (10) ). Furthermore one can show by means of the graphical
analysis that in _I;IJ the mapping $M is invertible. So one gets a
one to one correspondence for the tuples (?i,'fi ) and (;,23) implied

by the model mapping $M. According to (5) we have:
M~ o~
L@ ,N, (a,B) ) =1 for 2;31_r (11a)

b) The zeros of the function det Jﬁ(z) (Eqg. (10) ) in the case of 4
2;:)c point to a global amkiguity of the inverse relation (&M) .
in fact from given numerical values of the parameters F({ and ?3_ one
obtains two tuples of z and therefore d@ and E do not well define

the a priori parameters. Now we have:
~M ~ ~
L ,N, (a,B) ) =2 for 2p, (11b)

c) In both cases the subset of negative values of the a and r[?: is
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—~— e
restricted, so that there exist pairs (&,B ) which cannot be images
~M ~M

of tuples z due to ¢ . Therefore Y is not surjective with respect
to the whole set of negative values of @ and B . one of the beund-
aries is given by

M {2y =0}) for2 (128)

2,2, z, = or P a

and

rq“)M( [(%’,za) . det J (z) = 0}) for 2p (12b)
0

Therefore the equalities (11a) and (11b) are valid only in an appro-
~ d
priate subset "D" (not to confuse with D) of pairs (&, ) within

the above boundaries.

5. Discussion

Extending these results, which depend on the functional form of the
special $M, to the "best" mapping qJB (cf sec. 2), we have to take
into consideration that L(&pB,R,y) might exceed L(q‘)M,R_y) (note that
now we use lpM as general notation for model mappings) in the following
sense: Let be L*(\{),R) the maximum of L(p,R,y) with respect to all y
and with fixed v and R:

L*(\p,ﬂ) : o= maX[L(lD,R,Y)}
y

Then one has to expect:

L*WB,H) %% L*(wM,R) (13)

9
The inequality (13) qualitatively corresponds to further “informations"
inherent in better mappings resulting from additional interactions

(correlation effects etc) and the use of more subtle descriptions.

Until now not being able to prove the inequality (13), we expect that the
following statements hold, which at least should be plausible arguments
far(13):

a) A transformation of a ¢ to another similar and better @' does not



b)

c)
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cancel an already given global bifurcation of solutions of system (1).
For example we presume that a further term in ﬁM (Eqg. (9) ) for
2pc leading to ‘.pB would not remove completely the second solution
in the whole set R.

Furthermore, if there exists a (global) homeomorphism &

¥ s oM —% P s

then (13) is correct and even an equality. This would be an ideal
extrapolation procedure because the determination of L(n.pM,R,y) is
not so difficult as that of ab initio like models, or in other words:

If inclusion of additional effects or interactions in a mapping ¢ leads
to ' such that we have an analogy to (14) then it is sufficient to

examine L with respect to the simpler .

For example, if the image q)B(z) of the "best" mapping LDB can be
thought of as generated through a bijective linear transformation (e.g.
the scaling of the 'PiM(z))of LpM(z) then we get such a (very simple)

homeomorphism.

When applying the degree of mapping d(yp,R,y) 1 &) with
ld(p,R,¥)l £ L(p,R,y) for "almost all” y € [5) (15)
and with

d(yp,R,y) = constofhomotopic +) connected mappings © (16)

+)

degree of mapping: d(p,R,y) = I sign (det J (z) ), the sum of all
z which are solutions of (1) and elements of R.
homotopy : Given two continuous mappings ¢ and p' and

(z,t): =(z1,z yeeeayt) 0 £t £ 1 we

2753
have a homotopy through H(z,t), if H(z,t) is
simultaneous continuous in z and t and:
H(z,0) = w(z)

H(z,1) = ¢'(2)
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the important property (16) yields stability at least of the lower
bound of L due to homotopic variations of p 10.
Of course the relation (13) does not follow mathematically from
(16) in general, but for mappings of similar form I}Should be rather
insensitive.
Applications of the important concept of the degree of mapping will
be given in greater detail in a following paper. For example it can
be shown that respectingsome (rather important) premise510 the
number of solutions should be > 1 due to homotopic variations of
) M(zpn) and Z 2 in case of LpM(ZpO Y.

d) Finally according to L.C.ALLEN9 in Eq. (7) crudely we simulate
destabilizing interactions by simply adding the terms

Z1Z2K/23 for Hii

“an
2,25 K/z:3 for Hij iAo,
K being & constant and S the overlap integral. Adding (17) to (7)
and considering only the first two components we get a much more
complicated situation, especially in the case of 2p0 -STOs, with the
graphical method being at the limit of its efficiency. The inequality

(13), however, seems to be confirmed. To gain a deeper insight

For example, through

H(z,t) = to'(2) + (1 -1 ¢(2)

we have (assuming the simultaneous continuity)
a homotopy. p and @' are connected by a homo-
topy, or @' is generated by a homotopic variation
of ¢ and conversely.

For the sake of distinctness in (16) we have not
mentioned the restriction

y & HENY forall te [0,1]

& N: the boundary of N or N (Eq. (12) ).
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into this complicated case one could try to use modern mathematical

concepts like " catastrophe theory" where problems arising from

"fold- and cusp-points" etc can be handled systta-nnatically‘l‘I &

Given (13) we arrive at the following conclusions:
~M
i) For an__ -orbitals the mapping ¢ is invertible,i.e. there exists

a uniquely defined inverse relation
~ = ~
y =(ad ,B)—> =z = (2’23) forally ¢ D

and therefore a semiempirical theory built up with fﬁ e correspond-
ing to our premises is a good theory . If extended to the HMO theory
(given by o E3) this conclusion can be but is not necessarily valid
because we have
B B X
sR) = max {L( ¥ “(2p ),H,y)} Z L (97,R)=1
y

Ko

due to (13)

i) For 2po orbitals HMO theory respectively HMO type theory is not a
good semiempirical theory.The application of 2p0 HMO seems to
be at least questionable and requires additional informations with
respect to ﬁ.

M - ~ M i )

iii) When we use @ respectively ¢ the different behaviour of the

two types 2p0 and 2pn is governed by the derivatives
8H12/ e z, respectively aB 623

and can be correlated with the functional dependence of the over-

lap integral as a function of z, ( nuclear distance) .

Our conclusions i) and ii) are not altered by so typical empirical

assumptions as

Hii being a monotone function of the effective nuclear charge of
atom i alone,

and

Hij being proportional to the overlap integral or given by a
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12
LINDERBERG type formula —, approximately assuming

S(2pn) ;= exp(—zs(z‘l * 22) )

2

S(2pc) Po=zgzz, S(2pﬁ) s

(S(2p0 ) is not correct for small z, values.)

6. Summary

The presented method is based upon the assumption that for a gualitative
explanation of semiempirical theories in terms of physical significant
parameters one has to establish a well defined solution of system (1) .
If

L(p,R,y) = 1 forall y € D

holds, then one can relate the semiempirical parameters y to better
defined ones z without being calculated actually. It is primarily im-
portant that L(p,R,y) is enough insensitive to { for extrapolation pro-

cedures like homeomorphism and homotopy to work well.

Vice versa additional interactions leading to variations of L can thus
be classified through L. Taking thispoint of view we find that in a
simple electrostatic model without electron interaction, correlations
and nuclear repulsion the HMO theory (given with 2pT[) is a good theory

apart from boundaries (12a) in contrary to the 2pO HMO type theory.

We hope that it might be possible in future to give restrictions such
that L(p,R,y) = 1 for 2th orbitals. This means that we must exam-
ine L relative to interactions (L dependent upon  }, relative to physi-
cally relevant tuples z (L dependent upon R) and finally relative to
appropriate regions within the set of negative values of y (L dependent
upon y). Up to now it seems that L is dependent only upon geometric

informations, i.e. on the overlap distribution along the internuclear axis.
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We expect that studying semiempirical theories (not only of quantum

chemical regime) by using a criterion like
L(¢,R,y) = 1 forall y € D

and applying mathematical methods letting L invariant might give

further special insight into the semiempirical parameters.
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